
Using Supervised Machine-learning Techniques

to Identify Objects Classes in Images with

Depth Data

Alan Lau

MComp (hons) Computer Science
University of Bath

April 2016

This dissertation may be made available for consultation within the
University Library and may be photocopied or lent to other libraries
for the purposes of consultation.

Signed:

Using Supervised Machine-learning Techniques

to Identify Objects Classes in Images with

Depth Data

Submitted by: Alan Lau

COPYRIGHT

Attention is drawn to the fact that copyright of this dissertation rests with its author.
The Intellectual Property Rights of the products produced as part of the project belong
to the author unless otherwise specified below, in accordance with the University of
Bath’s policy on intellectual property (see http://www.bath.ac.uk/ordinances/22.pdf).
This copy of the dissertation has been supplied on condition that anyone who consults
it is understood to recognise that its copyright rests with its author and that no
quotation from the dissertation and no information derived from it may be published
without the prior written consent of the author.

DECLARATION

This dissertation is submitted to the University of Bath in accordance with the require-
ments of the degree of Bachelor of Science in the Department of Computer Science. No
portion of the work in this dissertation has been submitted in support of an applica-
tion for any other degree or qualification of this or any other university or institution
of learning. Except where specifically acknowledged, it is the work of the author.

Signed:

Abstract

This project is an investigation of whether depth information captured using an RGB-
D camera was useful in classifying classes of objects in a scene, and how classification
models perform in a complex, real-world problem. We will look into three supervised
classifiers - support vector machines (SVM), random forest and AdaBoost.

Basing on the NYU Depth Dataset, feature engineering was performed using methods
such as K-means to obtain our training dataset. Then, tests were conducted to evaluate
how these algorithms perform with depth data, and whether they were suitable for our
problem.

It was found that random forest was best at dealing with a complex and noisy datasets,
achieving an accuracy of 43.8%, with precision at 51% and recall at 49% with the
training and testing datasets. The accuracy and precision-recall rates demonstrate
that depth can be made useful in prediction classes of objects in a scene. In fact, the
classifier was able to resemble the key parts of an image despite an expectataion of lower
performance than the approximate accuracy scores may suggest. We then discuss the
future work that can be performed to build on the findings of this project.

Contents

1 Introduction 1

1.1 Aim . 2

1.2 Evaluating Success . 2

2 Literature Review 3

2.1 Kinect Fusion . 4

2.1.1 Kinect Camera Technologies . 4

2.1.2 Comparing Structured Light and Time-of-Flight 5

2.1.3 Data Representation . 6

2.1.3.1 Point Cloud and Depth 6

2.1.4 Reconstruction . 6

2.1.4.1 Pipeline . 6

2.1.4.2 Volumetric Representation 8

2.1.5 Segmentation . 8

2.2 Depth Data . 10

2.2.1 NYU Depth Dataset V2 (Silberman et al., 2012) 10

2.3 Classification . 11

2.3.1 Classification Types . 11

2.3.1.1 Supervised Classification 11

2.3.1.2 Unsupervised Classification 12

2.3.2 Classifiers . 13

2.3.2.1 Notable Supervised Classifiers 13

2.3.2.2 Notable Unsupervised Classifiers 15

2.4 Performance . 16

2.4.1 Precision and Recall . 16

i

CONTENTS ii

2.4.2 Cross-validation . 18

2.4.3 Evaluating Unsupervised Classifier 18

2.5 Tools for Machine-learning Application 20

2.5.1 Python . 20

2.5.2 R . 20

2.5.3 MatLab . 21

2.5.4 Choosing a Tool . 21

2.6 Hardware Considerations . 21

2.7 The Project . 23

3 Technical Background 24

3.1 Support Vector Machine (SVM) . 25

3.1.1 Overlapping Classes . 26

3.1.1.1 The Cost Parameter (C) 27

3.1.2 Kernels . 27

3.1.2.1 The Gamma Parameter (γ) 28

3.1.3 Multiclass Extension . 28

3.2 Random Forest (RF) . 30

3.2.1 Decision Tree . 30

3.2.1.1 Growing a Tree . 31

3.2.2 Linking back to Random Forests 32

3.2.2.1 Bagging . 32

3.3 Boosted Trees . 33

3.3.1 Boosting . 33

3.3.2 AdaBoost . 35

3.3.2.1 The Learning Rate Parameter (α) 35

3.4 K-means Clustering . 36

3.5 Summary . 38

4 Methodology 39

4.1 Feature Engineering (Step 1) . 40

4.1.1 Depth Patches as Features . 40

4.1.2 Reducing Number of Datapoints 41

4.1.3 Creating Datasets . 43

CONTENTS iii

4.2 Training a Classifier (Step 2) . 45

4.2.1 Optimising Parameters . 45

4.2.1.1 Methods for Finding Optimal Parameters 46

5 Results 47

5.1 Finding Appropriate Parameters . 48

5.1.1 Overview . 49

5.2 Unoptimised Classifiers . 50

5.3 Evaluating the Best Classifier . 51

6 Conclusion 55

6.1 Achievements . 56

6.2 Other Lessons Learnt . 58

6.3 Future Work . 58

6.4 Final Thoughts . 59

A Python Script Documentation 60

A.1 General Descriptions . 60

A.2 Technical Documentation . 61

A.2.1 General Usage Guide . 61

A.2.2 Commands for Each Python Script 62

List of Figures

2.1 A screenshot to show how SemanticPaint utilises depth information from
a Kinect camera and Kinect Fusion to colour user-defined areas in real-
time. (Valentin et al., 2015) . 4

2.2 Graphical illustration of the differences between structured light and time-
of-flight cameras. 5

2.3 Representing depth in a 3-dimensional space. 6

2.4 Steps to create a 3D reconstruction with many images (taken from (Microsoft,
2013)). 7

2.5 A character represented using a voxel volume1 8

2.6 Showing some posibilities of segmentation done on the same image (Taken
from lecture slides created by Chinery (2016)). 9

2.7 (From left to right) original RGB image, raw depth map, processed depth
map (taken from Silberman et al. (2012)). 10

2.8 An overview of the process for getting a supervised classifier (Sahoo et al.,
2012). 11

2.9 Diagram representation of precision and recall (adapted from Powers
(2011)). 18

3.1 This illustration shows how SVM works with linearly separable datasets
and a linear kernel. The squared datapoints represent support vectors for
their corresponding class. 25

3.2 An elaborated Figure 3.1 showing slack values of points based on their
location in relation to the margin and decision boundary. 26

3.3 Effects of different γ values in ascending order. 28

3.4 Diagram showing ambiguity regions (green) for (a) the one-versus-the-
rest approach, and (b) the one-versus-one approach (based on figure 4.2
of Bishop (2006)). 29

3.5 A (classification) decision tree with two classes, A and B, and ‘colour’,
‘shape’ and ‘size’ as features (adapted from Murphy (2012)). 30

iv

LIST OF FIGURES v

3.6 The random forest model uses bagging to obtain a prediction by averaging
the results from many decision trees. 32

3.7 Demonstration of how boosted trees function. For each iteration, mis-
classified points are given a higher weight (points with a green border).
This new dataset is then used to train the next weak classifier, eventu-
ally resulting in a perfectly segmented classification space. (Adapted from
Lazebnik (2016)) . 33

3.8 An example of two clusters found with centroids µ1 and µ2 using K-
means clustering. 36

4.1 The iterative process of building a resultant model for accurate prediction. 39

4.2 Showing how each patch represents a window on the original image in
this simplified view. Two classes, red and blue, are represented in this
illustration. We shall illustrate the green patch in Figure 4.3. 41

4.3 An example of how we obtain a patch around a pixel (coordinate) and
normalise it. Note that we are using 15 ∗ 15 patches rather than 5 ∗ 5
patches as shown in this figure. 41

4.4 Distribution of classes. (Blue) shows the distribution of our dataset be-
fore K-means clustering was used; (Red) shows the distribution after
running K-means clustering on classes with more than 1,000 datapoints. 43

5.1 (Left) a bathroom scene from the NYU Depth Dataset; (right) our pre-
diction. 54

5.2 (Left) an office scene from the NYU Depth Dataset; (right) our prediction. 54

5.3 (Left) a bedroom scene from the NYU Depth Dataset; (right) our prediction 54

List of Tables

2.1 Groups of supervised classification algorithms and their notable examples. 13

2.2 Comparing properties of different classification models (adapted from
Caruana and Niculescu-Mizil (2006)) 14

2.3 Groups of unsupervised classification algorithms and their notable exam-
ples. 16

2.4 Confusion matrix (taken from Davis and Goadrich (2006)) 17

2.5 Common machine-learning evaluation metrics (taken from Davis and
Goadrich (2006)). 17

2.6 Evaluation methods for unsupervised classifiers (clustering). 19

3.1 Slack values and their meanings. 27

3.2 The effects of different C values on the margin. 27

3.3 Available kernels for SVM Classifiers in the scikit-learn library. . . . 28

4.1 Summarising methods used to extract a representative subset for a class. 42

5.1 Best accuracy scores found using grid search with 3-fold cross valida-
tion or the best of 3 randomised searches with 3-fold cross validation for
various classifiers – (in order) SVM with linear kernel, SVM with RBF
kernel, RF, discrete AdaBoost and continuous AdaBoost. 48

5.2 3-fold cross validation scores with unoptimised classifiers. 50

5.3 Random forest models with various parameter settings and their 3-fold
cross validation scores. 51

5.4 3-fold cross validation and test scores for some random forest classifiers
we ran. 52

A.1 Function and options for model.py. 62

A.2 Function and options for transform.py. 63

A.3 Function and options for prediction.py. 64

vi

Acknowledgement

This project is completed under the guidance of my supervisor, Dr Neill Campbell.
Thank you for your kind support and advice.

Special thanks goes to the Data Science team at Jagex Games Studio, Cambridge. The
exceptional team provided me an invaluable experience on learning more about data
during my placement year. Thank you for inspiring me to take on a project of this
kind, in particular to my managers, Chris Smith and Simon Worgan. Paul Wilson, a
dear friend and ex-colleague at Jagex, provided unequivocal support with queries about
the project. Thank you!

Also, to Stephen Daly, my dearest friend and partner, for supporting me throughout
the project. Thank you!

Lastly, for all those who have given me a helping hand through the years, directly and
indirectly, thank you.

Chapter 1

Introduction

Machine learning has been an interest since the early days of the invention of computers.
One active area of research of the application of machine learning is computer vision.
It aims to learn from images by finding distinctive characteristics in the underlying
numerical or categorical values through methods like curve fitting and splitting up the
data. For humans, we understand the context of an image so that we can still recognise
objects in it even if they are of different colour or made from different materials, but it
is a challenging problem for computers.

Images are inherently difficult to model as they have complicated distribution in the
data level. An orange in different images may appear different due to the environment
it is in, the angle of which it is taken from or colour temperature of the scene. Hence,
simply using pixel (colour) information may not make the cut.

Nowadays, some cameras are capable of capturing not only colours, but also depth in-
formation to show where an object sits in a 3-dimensional space. One particular inter-
esting project is Kinect Fusion, where it fuses images together to create a 3-dimensional
reconstruction of the scene and represent it in a 3-dimensional space.

In fact, research, such as SemanticPaint (Valentin et al., 2015), made use of this new
source of information to create a virtual/ augmented reality experience. Valentin et al.
(2015) provided a way to label objects and applied the same effect on other similar
objects in a scene in real-time. However, these recognised objects are not stored. Can
we find a generalised model using depth information to correctly predict objects in a
scene? This way, we could use this information to enable more interesting virtual/
augmented reality experience.

A good use-case would be a real-time system that suggests what can be placed on top
of a given recognised object. For instance, the system might suggest that ‘bowls’ and
‘cups’ can be placed on top of a table when a table top is recognised, and ‘pots’ and
‘pans’ when a stove is recognised.

1

CHAPTER 1. INTRODUCTION 2

Such recognition is a classification problem. We want to find an optimised decision
boundary that splits the data into regions in order to obtain a model that can predict
unseen objects. Together with a complex distribution, this optimisation problem be-
comes even more complicated and requires careful consideration. This contributes to
an accuracy and speed trade-off which we will look into in greater detail.

1.1 Aim

There are several aims with this project. For one, we want to find out how popular
classification algorithms perform in real-world applications. Formally, these models are
very robust with techniques to avoid common issues such as overfitting (taking noise
in the training data as features for the whole datasets). But, it is hard to know how
they perform with large and complex datasets. The raw dataset that we are basing this
project on will contain many images hence many possible datapoints. In chapter 4, we
will discuss our approach in dealing with such situation.

We also want to investigate the usefulness of depth data alone in predicting objects in a
scene. Could we obtain a classifier with high enough accuracy that can predict objects
in an image to good quality? With a high accuracy classifier, we can integrate it into
the aforementioned use-case in conjunction with other computer vision techniques such
as segmentation.

To limit the scope of the project, we will focus on training supervised classification
models, which we will discuss briefly in section 2.3 and in detail in chapter 3.

1.2 Evaluating Success

In order to evaluate how well our classifiers perform, we use various quantitative ap-
proaches, including accuracy and precision-recall rates. With these values, we can
examine whether we have trained a useful classifier with good prediction power.

Also, we want to ensure that we find the best decision boundary fit while avoiding
overfitting. An overfitted classifier does not possess any meaningful prediction power,
even though it might show impressive results in hindsight. We want to avoid being too
specific by using every detail of the training dataset without compromise, otherwise we
will end up with a classifier that is tailored only to this dataset.

We will discuss all these concepts in detail in the upcoming chapters.

Chapter 2

Literature Review

This project aims to facilitate an augmented reality experience, where it could provide
suggestions of the classes of objects that can be placed on top of a recognised object in
the real-time scene using a Microsoft Kinect Camera. To achieve such a goal, classifica-
tion, a form of machine-learning, is proposed to be used to recognise classes of objects
in images. We can train different statistical classification algorithms with many similar
objects, which then create generalised classifiers that can be used to predict unseen
objects.

Being an RGB-D camera, not only does the Kinect Camera capture colour (RGB) im-
ages, it also captures depth information via infra-red combined with a monochrome
camera (Microsoft, 2013). This information enables a detailed 3-dimensional recon-
struction. We will look more into the functionality of these cameras in section 2.1.

A group of New York University researchers have created a depth dataset called the
NYU Depth Dataset captured by a Kinect camera (Silberman et al., 2012), which is
freely available online 1. A variety of objects are scanned, segmented and labelled from
a scene. The variety and the number of scans makes it an ideal candidate as training
data for our classification problem. We will look into the available datasets in more
detail in section 2.2.

This Review attempts to explore in greater detail about the NYU Dataset and its
applications, how depth maps are useful to 3-dimensional reconstruction and how the
depth dataset might be useful for training classification models. We will also look at
the different classification algorithms and find out which of them we should try.

1The NYU Depth Dataset V2 is available for download at http://cs.nyu.edu/~silberman/

datasets/nyu_depth_v2.html

3

http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html

CHAPTER 2. LITERATURE REVIEW 4

2.1 Kinect Fusion

We start off by looking at Kinect Fusion, where our depth dataset is created from.

The Kinect Camera was first released for the company’s gaming console, XBox 360. It
was designed to recognise gestures, faces and voices, providing a more physical way and
new dimension to interact with the interface and games than a conventional controller.
A Windows-compatible version of the Camera, an SDK and Kinect Fusion were released
later, enabling research into the usage of depth information and the development of
commercial products (Microsoft, 2013).

Figure 2.1: A screenshot to show how SemanticPaint utilises depth information from a
Kinect camera and Kinect Fusion to colour user-defined areas in real-time. (Valentin
et al., 2015)

Augmented reality (AR) and real-time reconstructions are some of the most popular
research area with Kinect Fusion. SemanticPaint (Valentin et al., 2015) demonstrates
the possibility of Kinect Fusion in AR in real-time scenes. It allows parts of the scene
to be ‘painted’ by the user. It also uses segmentation and object recognition to paint
similar objects in the same colour. Although this project does not involve real-time
processes, it provides some required knowledge about how to create or use an existing
segmentation algorithm and classification approaches to label individual items from a
scene.

2.1.1 Kinect Camera Technologies

There are two generations of Kinect Camera, where they use different 3-dimensional
camera technologies to obtain depth information about a scene. Each of these technolo-
gies has its pros and cons, which is discussed below. However, the common problem of
these technologies is that they do not deal with very bright light, where detail will be
lost (Shao, Han, Kohli and Zhang, 2014).

Structured Light Structured light is used in the first generation Kinect Camera
(2010). A sequence of known infra-red pattern is projected onto the scene. A de-
formed pattern is formed when objects are ‘in the way’ of the pattern. The object

CHAPTER 2. LITERATURE REVIEW 5

is then observed from another angle by the monochrome camera. Through analysing
the deformed patterns and observations, the depth information about the scene can
be obtained (Shao et al., 2014)(Sarbolandi et al., 2015). It is worth noting that the
NYU Depth Dataset (Silberman et al., 2012) uses information captured by the first
generation of the Kinect Camera, which is discussed in section 2.1.3.

Time-of-Flight Rather than looking at the deformed pattern, the second-generation
Kinect Camera (2013) estimates depth information based on the time the infra-red
beam takes to travel to and back from an object. The difference between the reference
signal and the returned signal allows the calculation of a time difference, which helps
estimating the required depth information (Shao et al., 2014).

2.1.2 Comparing Structured Light and Time-of-Flight

Structured light cameras obtain more robust depth data than time-of-flight cameras,
because they observe the pattern formed rather than being estimated using the time
taken for the infra-red ray to be reflected off the object.

On the other hand, time-of-flight cameras have more advantages than structured light
cameras. For instance, they can handle a much brighter situation - 1W power of light
versus 1 µW (Li, 2014). Also, they are capable of higher frame rate, which is especially
useful when capturing videos and for real-time purposes, as no software is required to
interpret the observed pattern (Sarbolandi et al., 2015).

Although the depth data captured by time-of-flight cameras is less precise, they pro-
vide a better real-time experience due to their higher frame rate capability and fewer
environmental requirements.

Figure 2.2: Graphical illustration of the differences between structured light and time-
of-flight cameras.

CHAPTER 2. LITERATURE REVIEW 6

2.1.3 Data Representation

2.1.3.1 Point Cloud and Depth

Figure 2.3: Representing depth in a 3-dimensional space.

A point cloud stores data points in a coordinate system (Shao et al., 2014). In a
real-world case with captured images, a 3-dimensional space is used. This can be
a coordinate system or some other unit such as distances from the camera. In the
context of depth from the view of a camera (illustrated in Figure 2.3), it can live
in some coordinate system which can then be used to infer the distance between the
formed image and the point in that space. A point cloud can also be used to generate
a mesh so that it can be used to render a visual image of the reconstruction volume.

Figure 2.3 demonstrates the information captured by an RGB-D camera like the Kinect.
The image plane shows the normal colour image captured just like any other camera.
The 2-dimensional plane is composed of a grid of spots known as pixels, with each
representing some form of colour, created using a mixture of different levels of red,
green and blue. Depth is the distance between a pixel in the image plane and the
actual position of that pixel in a real-world, 3-dimensional space.

2.1.4 Reconstruction

2.1.4.1 Pipeline

A single raw capture with the Camera does not provide much information about a scene.
Combining the depth information of many images together enables a super-resolution
reconstruction (Izadi et al., 2011), creating a detailed and high quality reconstruction.
The following is the full pipeline of how a reconstruction is created using raw depth
data:

CHAPTER 2. LITERATURE REVIEW 7

Figure 2.4: Steps to create a 3D reconstruction with many images (taken from
(Microsoft, 2013)).

1. Raw Input Conversion

• The raw depth map is captured by the infrared-monochrome subsystem of
the Camera. This information is not very detailed. A depth map stores
the distance between the RGB image plane and the real world location in a
3-dimensional coordinate system (recall Figure 2.3).

• It needs to be combined with the normal map, which is the surface normals
associated with each vertex (Szeliski, 2010). It provides a more detailed but
still noisy reconstruction at this stage (Microsoft, 2013).

• Further conversion and reconstruction is needed to retain detail, remove
noise, and fill in holes missed by the Camera, possibly due to bright light.

• This information is stored as a point cloud and will be combined into one
representation later on.

2. Camera Pose Tracking

• The location and orientation of each frame (videos are created using multiple
images called frames), often referred to as the world pose, are tracked as the
camera moves around.

• This alignment is constantly traced, allowing all the point clouds to be
aligned together (Microsoft, 2013).

• The frames captured from different poses, even the smallest movement (e.g.
caused by a hand-shake), will allow further quality improvements to the
scene, achieving more than what a single raw capture is capable of (Izadi
et al., 2011).

3. Fusing

• The depth data converted from the raw input is combined into a single
3-dimensional space per frame.

• A running average of depth is kept. This reduces noise, and creates a refined
reconstruction by combining all the information in one place (Microsoft,
2013) (Izadi et al., 2011).

CHAPTER 2. LITERATURE REVIEW 8

4. Volumetric Integration

• The resultant point cloud will be of a highly detailed reconstruction of the
scene. For example, grills of a millimetre can be reconstructed properly
(Izadi et al., 2011).

• A rendered image of the 3-dimensional reconstruction volume is possible by
using methods such as ray-casting to provide a visual feedback of the scene,
and allows for many possibilities, such as augmented reality applications.

2.1.4.2 Volumetric Representation

Figure 2.5: A character represented using a voxel volume2

By averaging the surface models and depth data from multiple viewpoints into one
voxel volume, the scene appears to live in a 3-dimensional ‘box’ constructed in voxels.
As illustrated in Figure 2.5, a voxel can be imagined as a 3-dimensional pixel that has
some parts ‘carved away’ to represent the curvatures as perceived in the real world
(Szeliski, 2010).

If this high quality reconstruction can be done fast enough, it can be used for interesting
applications, such as an augmented reality experience where virtual particles appear to
live and follow the cantors of the objects in the scene, as demonstrated by Izadi et al.
(2011).

2.1.5 Segmentation

In order to perform classification of objects in a scene with many objects, we need to
single them out individually so that operations such as labelling can be done. In com-
puter vision, this is called segmentation. This is not a simple problem. As illustrated
in Figure 2.6, segmentation is a subjective task even for human. The image can be
segmented in many ‘correct’ ways.

2Image taken from http://www.gamersnexus.net/gg/762-voxels-vs-vertexes-in-games

http://www.gamersnexus.net/gg/762-voxels-vs-vertexes-in-games

CHAPTER 2. LITERATURE REVIEW 9

Figure 2.6: Showing some posibilities of segmentation done on the same image (Taken
from lecture slides created by Chinery (2016)).

There have been many studies on the topic of image segmentation. Results produced
using unsupervised classifiers such as K-means and mean-shift are often used as bench-
marks to test against their research (we will discussed about unsupervised classification
in section 2.3).

Many approaches have been tried on a wide variety of segmentation problems. For
example, Alpert et al. (2012) used a probabilistic approach to segment between fore-
ground and background, Rother et al. (2004) utilised both colour and edge information
to ‘perfectly’ remove the background and obtain the foreground with smoothed edges.

Semantic segmentation is another interesting segmentation problem. It attempts
to segment a complex multi-object scene meaningfully. Silberman et al. (2012) used
depth information and support inferences to enhance segmentation and labelling of
these areas. As a side note, support inferences tell the relationship between objects -
e.g., ‘if a cup is supported by the book, then the cup must be lifted first’ (Silberman
et al., 2012).

More advanced research often introduce new datasets enabling further research. In
fact, Silberman et al. (2012)’s research resulted in the creation of an extensive depth
information dataset known as the NYU Depth Dataset. Further research done by Ren,
Bo and Fox (2012) improved its labelling accuracy by 20%. We are going to base our
classification dataset on this dataset, which we will now discuss.

CHAPTER 2. LITERATURE REVIEW 10

2.2 Depth Data

As the objective of the project is on real-world application, we require a dataset that
contains many image scans of a variety of scenes. Firman (2016) has compiled a list of
RGB-D datasets available for research use. Many of the datasets are images of objects
in lab setups. While these datasets may enable impressive results more easily, they lose
the real-world scenario we are aiming for.

2.2.1 NYU Depth Dataset V2 (Silberman et al., 2012)

Quality training data is required to achieve high precision and accuracy. The NYU
Depth Dataset provides a quality set of depth data which can be used for training a
classifier with the aim of achieving high precision and accuracy. There are 1449 densely
labelled images from a wide range of scenes in this version, containing 895 classes of
objects. A large, high quality dataset from a wide range of scenarios provides a good
base for trying to achieve a high performance, generalised classifier.

Figure 2.7: (From left to right) original RGB image, raw depth map, processed depth
map (taken from Silberman et al. (2012)).

The raw depth information captured by the camera would lose finer, sometimes impor-
tant, detail. Silberman et al. (2012) provides processed depth maps for each of these
images, which contain well-defined depth data for the objects. The dataset also con-
tains accelerometer metrics (roll, yaw, pitch and tilt) which could be used to normalise
the images to point at the same direction.

It also contains labels for each instance of the objects in a scene. For example, if there
are three chairs, they are labelled as chair1, chair2 and chair3. In computer vision, we
might want to match objects between two images so that we can create a panoramic
image (this is beyond the scope of this project).

CHAPTER 2. LITERATURE REVIEW 11

2.3 Classification

The idea of classification is to identify the group an object belongs to. This relies heavily
on a good algorithm that is able to group similar objects together in the first place.
In more formal words, a classifier groups objects that has some semantic similarity
enough to be classed as the same type. Each class has a label in which these objects
are identified as. For example, round objects that can hold liquid can be classed as
‘bowls’, despite being different in colour and of slightly different shapes (Hall, 2015).

2.3.1 Classification Types

There are many classification models that are fit for different purposes. They are
broadly split into two groups - supervised and unsupervised (clustering). The following
explains what they are. We will look at some classification algorithms that could be
used for this project.

2.3.1.1 Supervised Classification

Figure 2.8: An overview of the process for getting a supervised classifier (Sahoo et al.,
2012).

Supervised learning uses pre-labelled data to train a classifier. The labels and the
number of them are pre-defined so that the classifier has a limited number of choices.
The classifier has to aggregate and understand the similarities so to be able to say
which class an unknown object is, based on what is already known (Sahoo et al., 2012).

A supervised classifier can either be probabilistic-based or geometric-based. Probabilistic-
based algorithms involve a probabilistic density function (Gaussian distribution be-
ing one of the most well-known ones), and are sub-divided into parametric and non-
parametric. For a parametric classifier, the statistical probability distribution of each
class is known and used, whereas the purpose of a non-parametric classifier is to esti-

CHAPTER 2. LITERATURE REVIEW 12

mate the distribution, as the number of parameters is not known, or does not matter
(Sahoo et al., 2012) (Hall, 2015).

Supervised learning is ideal when there are an abundance of correctly labelled data for
the classifier to learn from. Figure 2.8 describes the process of performing supervised
classification graphically. A training set contains a subset of the pre-labelled data,
which is used to train a selected classification algorithm. Some of the pre-labelled data
is set aside and used as the test set to see how well the trained classifier performs.

We should emphasise the importance of the validation and test sets in evaluating the
performance of a classifier. At training time, we can use the validation set to evalute
the performance and rectify any mistake in classification quickly. The test set should
be kept blind until the final classifier is produced.

Overfitting is a common issue when the classifier becomes too specific to the training
data. In other words, it is treating noise as true signals by taking every minor variation
in the training data into account (Murphy, 2012). If a classifier is overfitted by the
training data, its ability to predict unseen information is hampered. In such case, we
expect a great difference between the training error and testing error. We will further
discuss this issue in chapters 3 and 4.

2.3.1.2 Unsupervised Classification

Unsupervised classification is also known as clustering. Items with similar properties
in the data level will be grouped together by the algorithm itself. Training is still
required, but the label is assigned by the classifier rather than manually. The training
data should be unlabelled, to allow the algorithm decide on the best way to group
the data as classes. Ultimately, the goal with unsupervised learning is to avoid any
intervention and let the algorithm do its job (Hall, 2015).

In computer vision, unsupervised classification is mostly used for object recognition
in moving scenes and image segmentation. As mentioned, we are going to focus on
supervised algorithms to manage the scope of this project, so that we shall only look
into this briefly.

This should not be confused with online learning. Online learning updates the classifier
as new datapoints come in (Murphy, 2012). Quality new data should improve the clas-
sifier over time. This can be used with both unsupervised and supervised algorithms.
For example, a streaming version of random forest is used to learn about newly labelled
areas in real-time by Silberman et al. (2012).

CHAPTER 2. LITERATURE REVIEW 13

2.3.2 Classifiers

We now look at some of popular and notable classification algorithms for both super-
vised and unsupervised methodologies briefly. We will discuss some of them in detail
in chapter 3.

2.3.2.1 Notable Supervised Classifiers

Broadly speaking, there are four groups of supervised classification algorithms, namely,
Bayesian, Trees, Lazy and Functions. Table 2.1 shows the algorithms and their associ-
ated groups that we are going to talk briefly about.

Group Model to be discussed

Bayesian Naive Bayes (NB)

Trees
Decision tree (DT)
Random forest (RF)
AdaBoost (ADA)

Lazy K-nearest neighbours (KNN)

Functions Support vector machine (SVM)

Table 2.1: Groups of supervised classification algorithms and their notable examples.

• Naive Bayes (NB) uses the Bayes’ Theorem of probability reasoning (the prob-
ability of an event happening given some condition). It also assumes that features
are conditionally independent given by the Bayes’ Theorem, although this may
not be true in reality (Murphy, 2012). The algorithm obtains its probability by
representing the data as distributions and extracting the class that gives a higher
probability. Theoretically, it is robust to overfitting and is a simple algorithm
with speedy performance.

• Decision Tree (DT) is a multiclass classification algorithm that splits the
dataset in the input space and gives local models for each region. This cre-
ates a tree with each node containing some conditions for deciding which children
node to go next. By counting the number of datapoints going from the starting
node to a leaf for each possible path, we obtain a distribution in the end for each
leaf showing the most probable class this path leads to. This is a simplistic and
efficient way in finding different groups within the input space. However, it can be
overfitted easily, making it difficult to use with complex datasets (Murphy, 2012).

• Random Forest (RF) is an ensemble method. It obtains a prediction by av-
eraging the results of many decision trees, which was found to be more effective
than a single decision tree (Caruana and Niculescu-Mizil, 2006). It attempts to
overcome the problem of overfitting by randomising both the features and data
used to build each tree.

• AdaBoost (ADA) uses boosting to achieve a high quality classifier. Over some
specified number of iterations, weak learners are trained and combined to form
the final classifier. A weak learner is one that does not give much information

CHAPTER 2. LITERATURE REVIEW 14

nor very accurate by itself, but is always be better than random (Murphy, 2012).
These weak learners are usually decision trees.

At each iteration, a weight is added to misclassified datapoints, which is then
used by the next iteration to train the next weak classifier. Additively, the resul-
tant classifier becomes a robust classifier that provides strong classification power
(Schapire and Freund, 2012).

• K-Nearest Neighbours (KNN) uses K datapoints around each datapoint to
obtain the class it belongs to. Despite being a non-parametric model means that it
is fast at training, it assumes strongly about the data distribution. Each datapoint
simply takes the count of each class in the surrounding datapoints to decide on
its class. Other downsides include complex decision boundaries and does not
work well with high dimensional datasets, known as ‘the curse of dimensionality’
(Murphy, 2012).

• Support Vector Machines (SVM) aims to maximise the margins which run
parallel to the decision boundary and are defined by points of each class. Data
points forming the margins are called support vectors. It is a popular algorithm
because of its versatility, with many tunable parameters and kernels for different
distributions of data. It started off being a binary classifier, but is extended for
multiclass classification by building multiple classifiers and comparing between
them – one-versus-one and one-versus-the-rest are the two methods in achieving
multiclass SVM (Bishop, 2006).

Note that from now on, we will use the acronyms in brackets stated next to a term for
clarity. For instance, we will refer to Support Vector Machine as SVM.

Model Training Speed Classification Speed Mean Accuracy

BST-DT Fast Fast 89.6%

RF Rather fast Rather fast 89.2%

SVM Slowest Slowest 86.2%

KNN Rather fast Rather fast 81.5%

DT Very fast Very fast 70.9%

NB Fastest Fastest 65.4%

Table 2.2: Comparing properties of different classification models (adapted from Caru-
ana and Niculescu-Mizil (2006))

Caruana and Niculescu-Mizil (2006) performed 11 tests on widely available benchmark
datasets on some supervised classifiers. Table 2.2 shows the properties of some of these
classifiers and their average results on the 11 tests. Note that this can only be used as
a benchmark as our dataset will be much more complicated and larger than the ones
used in their paper.

Tests done by Amancio et al. (2014) and the descriptions in the scikit-learn doc-
umentation (we will discuss more about scikit-learn in section 2.5) both suggest

CHAPTER 2. LITERATURE REVIEW 15

that SVM can outperform Random Forest with proper parameter tuning and kernel
settings, but the trade-off is speed.

SVM is known to not scale well and could require a long training time compared to other
models (Caruana and Niculescu-Mizil, 2006). However, it is also one of the popular
machine-learning algorithms used for classification and regression problems, due to its
ability to be customised with parameters, and support for different kernels to cater for
different shapes and density of the input data. We shall discuss more about this in
section 3.1.

Tree methods (Boosted Decision Tree (BST-DT), DT and RF) and SVM have differ-
ent algorithms underneath. Tree methods obtain their good performance through an
appropriate amount of randomisation of the training dataset, whereas SVM does so by
choosing the right kernel and tweaking its parameters. In chapter 3, we shall discuss
in depth their properties.

Despite KNN seems to perform relatively well compared to DT and NB, our dataset
will be highly dimension (discussed in chapter 4), meaning that it would not be the
best choice of classifier in our case. And, we could most likely disregard DT and NB
due to their relatively poor accuracy even with benchmark data.

This leaves us with BST-DT, RF and SVM. In fact, they are widely used to solve
classification problems. For instance, (Valentin et al., 2015) uses an online learning
varient of RF to train newly labelled items so to paint that class of objects in the scene
with the same colour. AdaBoost is a popular boosted tree algorithm, which we should
use as our ‘boosted decision tree’ algorithm. In chapter 5, we are going to find out if
these algorithms produce respectable results.

2.3.2.2 Notable Unsupervised Classifiers

As mentioned in the introduction, we are going to focus on supervised classification to
limit the scope of this project. Nonetheless, we should briefly look at some popular
unsupervised algorithms. In fact, we will be using K-means clustering for a different
reason than training a classifier or for image segmentation. Instead, we will use it to
engineer our dataset. We will discuss this in chapter 4.

Unsupervised classification models are also known as clustering. It aims to group similar
objects together (Murphy, 2012). Broadly speaking, we can split clustering algorithms
into three categories, namely, centroid-based, distribution-based and density-based. Let
us discuss briefly about the models mentioned in Table 2.3.

CHAPTER 2. LITERATURE REVIEW 16

Group Model to be discussed

Centroid-based K-means

Distribution-based Gaussian Mixture Models with Expectation
Maximisation (GMM with EM)

Density-based DBSCAN

Table 2.3: Groups of unsupervised classification algorithms and their notable examples.

• K-means clustering takes K random datapoints to be the starting point. Dif-
ferent points are picked until the groups become stable and produces groups with
minimal distances between each point and their surroundings. These points would
end up being the mean of their corresponding cluster (µk for a cluster k), also
known as centroids (Bishop, 2006).

• Gaussian mixture model combines multiple Gaussian distributions by impos-
ing them to capture more information about the dataset (Bishop, 2006). Similar
to K-means, each Gaussian k centres around the mean µk, but it also introduces
covariance to allow it to work with high dimensionality the data. However, the
amount of tunable parameters make it rather unscalable (scikit-learn, 2016).

Finding parameters are simple when complete data is available, but usually not
the case. With the help of the Expectation Maximisation algorithm (often referred
to the EM algorithm), it iteratively finds missing values by fixing some parameters
(the E step), and then optimising the other parameters with these new values (the
M step) (Murphy, 2012). In fact, this method can be applied to many clustering
models, including K-means. We will see this more formally in section 3.4.

• DBSCAN is a model that finds clusters of any shape by separating out high
density as clusters. It is particularly useful for datasets with a widely separated
spiral shape. It looks at the number of neighbouring points there are in its
surrounding to decide if it belongs to a particular cluster. This is effective in
distinguishing between noise and cluster membership, but not in locating closed-
by clusters. On the up side, it is even more autonomous than other clustering
algorithms such as K-means in the sense that it does not require a specified
number of clusters for instance.

2.4 Performance

After we trained a classifier, we have to evaluate its performance. As mentioned in the
Introduction, we can use various methods to find this out. In this section, we will look
into precision-recall rates and the cross validation.

2.4.1 Precision and Recall

The precision and recall rates (accuracy) can be calculated to analyse the performance
of the classifier (Davis and Goadrich, 2006). They are calculated by comparing predic-

CHAPTER 2. LITERATURE REVIEW 17

tions against the actual values.

Actual Positive Actual Negative

Predicted Positive TP FP

Predicted Negative FN TN

Table 2.4: Confusion matrix (taken from Davis and Goadrich (2006))

In order to calculate these rates, a confusion matrix is computed. It is a table that
puts the correctness of predictions against the actual values of the underlying data
(Table 2.4). This shows the number of correct and incorrect recognition, allowing a
couple of metrics to be calculated, notably precision and recall (Table 2.5).

Recall = TP
TP+FN

Precision = TP
TP+FP

True Positive Rate = TP
TP+FN

False Positive Rate = FP
FP+TN

Table 2.5: Common machine-learning evaluation metrics (taken from Davis and Goad-
rich (2006)).

Precision and recall takes into account all the true-false positives and negatives. Preci-
sion is the positive predictive value – ‘how many selected items are relevant’, whereas
recall explains the sensitivity – ‘how many relevant items are selected’, as seen in Ta-
ble 2.5 and Figure 2.9. The former tells us how well the model can predict correctly;
the latter tells us the quantity of which the relevant items is picked (Powers, 2011).

To say that a model is good for use, it has to be both precise and has a high recall rate.
If a model is very precise, but does not pick up much of the relevant items, the model
might look as if it was performing well, but in fact, it has hardly picked out enough of
the right items; vice versa.

CHAPTER 2. LITERATURE REVIEW 18

Figure 2.9: Diagram representation of precision and recall (adapted from Powers
(2011)).

It is important to ensure that the training and testing sets are different and that there
is no overlap between the two sets, otherwise overfitting will happen. Overfitting is
evident when a classifier appears to be functioning perfectly during the train-and-test
stage, but turns out to be unable to classify new objects when put into use. On top
of the training and test sets, a third validation subset can be introduced. This enables
an extra check to ensure that the classifier actually works. However, the precision and
accuracy of the classifier could suffer as a result of a smaller training set (Pedregosa
et al., 2011).

2.4.2 Cross-validation

It could be problematic to hold out data for training, validation and testing when there
is a lack of a sizeable dataset. On one hand, we know that it is important to perform
testing to find out the real performance. On the other hand, we want to learn from as
much information as possible.

Cross-validation solves the problem by creating some mutually exclusive folds (subsets).
These folds are created after a test set is taken out from the original set of data. Many
classifiers are trained with different splits, resulting in an average that estimates the
complete cross-validation (Kohavi et al., 1995). This gives an unbiased view as to how
the classifier performs, as it is not limited to one fixed set of testing data.

One popular algorithm is k-fold cross-validation. It does not run validation on all
possible splits on the folds but one different split for each run to save on computational
complexity, while giving a good estimate on how the classifier is performing.

2.4.3 Evaluating Unsupervised Classifier

Although we are not attempting clustering as a classification solution, we should un-
derstand the methods that can be used to evaluate them.

CHAPTER 2. LITERATURE REVIEW 19

Clustering methods are more difficult to evaluate, but not dissimilar to how supervised
classifiers are evaluated (Murphy, 2012). There are two types of evaluations. Internal
evaluation looks at the data from within the cluster, much like the training accuracy
in a supervised classifier. We try to predict the same set of data as used for training
it. External evaluation uses data that has not been seen before, which is similar to
evaluations of supervised classifier that obtain a test set accuracy score.

Type Method

Internal Evaluation
Davies-Bouldin Index
Dunn Index
Silhouette Coefficient

External Evaluation

Rand Measure
F-measure (F-score)
Jaccard Index
Fowlkes-Mallows Index
Mutual Information
Confusion Matrix

Table 2.6: Evaluation methods for unsupervised classifiers (clustering).

Internal methods aim to evaluate the separation and density between clusters, and
identifying outlying points. Most external methods require a ground-truth dataset (an
unseen labelled dataset that can be used to compare with the trained model) (Färber
et al., 2010). For instance, F-measure provides a single value by taking the mean of
precision and recall harmoniously.

CHAPTER 2. LITERATURE REVIEW 20

2.5 Tools for Machine-learning Application

There are many tools out there that provide machine-learning capabilities. For the
purpose of this project, we are going to use Python due to the availability of some
useful packages and our familiarity with the language.

Nevertheless, we shall look into the three most popular languages and their associated
libraries for machine-learning.

2.5.1 Python

Python is a general purpose programming languages widely used for scripting tasks. It
is one of the top programming languages used for many purposes, with a wide range of
libraries for different tasks. Python is open-sourced, meaning that it is freely available
for use. However, Python suffers from the Global Interpreter Lock, disallowing multiple
threads to run at one time (Python, 2015). This could hamper performance when a
large amount of memory or parallelism is required.

• scikit-learn is an actively developed machine-learning library for Python. It
has quality implementations of popular machine-learning algorithms for different
machine-learning problems. It is built on numpy and scipy, making it easy for
data manipulation (Pedregosa et al., 2011).

A wide range of companies use scikit learn for machine-learning purposes, includ-
ing Spotify and Evernote.3 Pedregosa et al. (2011) compared it with other Python
machine-learning packages which sees scikit-learn beating the others in baseline
tests in terms of speed and performance. It has implementations of the supervised
and unsupervised classification algorithms we briefly mentioned in section 2.3.2.

It also supports several classification tasks to run at the same time when using a
multi-core computer with its integration with joblib. However, it is not possible
to run them in parallel across multiple machines.

• numpy is a powerful tool for manipulating and storing arrays. It allows an array
to be reshaped into any dimension without altering the underlying data, enabled
by its powerful memory management. It is able to be represented much more
efficiently than the built-in list structures in Python (van der Walt et al., 2011).

2.5.2 R

R is a popular language used by the data analytics and data science community. It
provides an extensive selection of libraries for data manipulation and machine-learning
purposes. It provides great visiualisation libraries such as ggplot2 for graph plotting
and data.tables for efficient data manipulation.

3According to scikit-learn at http://scikit-learn.org/stable/testimonials/testimonials.

html.

http://scikit-learn.org/stable/testimonials/testimonials.html
http://scikit-learn.org/stable/testimonials/testimonials.html

CHAPTER 2. LITERATURE REVIEW 21

R is an open-sourced statistical programming language. It has an engaged commu-
nity and can be used in conjunction with other popular general-purpose programming
languages. Also, R has a large presence in big technology companies, such as Google,
Facebook and Twitter, as well as in academia and sciences4. However, R has a steep
learning curve because of its syntax. And, it is known to not scale very well as data
has to be stored on RAM.

2.5.3 MatLab

MatLab is widely used mainly in academia, and research and development purposes.
It provides quick prototyping due to its high-level language. It also contains many
libraries and toolbox to perform a wide range of operations. For instance, the Image
Processing Toolbox provides for computer vision application, such as image filtering
which is used for edge detection. For classification, MatLab has implementations for
popular algorithms that we mentioned previously.

2.5.4 Choosing a Tool

It is difficult to decide which language is the best. Like any programming situation,
there is no one language that is superior than another. There is only one that is more
suitable than another based on its capability to perform a given task.

In this case, they all provide rich libraries and community support with many guides
available. R and Python are the languages used by the popular data science competition
website, Kaggle, while MatLab is well-established in academia with an abundance of
libraries, making it a difficult decision.

Python is chosen because of its simple syntax and our personal experience with it. It
is shown to have solved real-life machine-learning problems for reputable companies
and widely used. Also, being a language that is widely used for scripting purposes,
command line arguments can be used easily to supply variables to the underlying code
without having to change the code itself. This is particularly useful for this project,
as we will have to run our scripts for some specified functions with different arguments
many times.

2.6 Hardware Considerations

We are potentially dealing with many datapoints of large feature vectors. Although a
moderately modern computer with relatively large amount of memory and multi-core
processors will suffice to moderately challenging machine-learning tasks, it would be
ideal to be able to off-lift these heavy operations to a more powerful system that can
be used any time anywhere with an Internet connection.

4According to Revolution Analytics, maker of R, at http://www.revolutionanalytics.com/

companies-using-r.

http://www.kaggle.com
http://www.revolutionanalytics.com/companies-using-r
http://www.revolutionanalytics.com/companies-using-r

CHAPTER 2. LITERATURE REVIEW 22

There are two notable options - the High Performance Computer cluster at the Univer-
sity, Balena5, and Amazon EC26. They are both ideal services as they provide flexibility
and scalability that cannot be matched by a personal computer. The following discusses
some of their features, and pros and cons.

• Balena
It is made up of many computers to form one big connected computer service. It
contains 78 nodes with 64GB of memory and 80 nodes with 128GB of memory.
A user can submit a job with a simple script and it will enter a queue. The job
will run when appropriate resource is available and that the job has reached the
top of the queue. Also, it supports parallel computing, where multiple node can
be joined together to perform some tasks. This service can be accessed by any
University of Bath personnel that has a need for it.

There are different groups of accounts available. For a free account, a user can
only run jobs up to 6 hours and has limits on how many computing-hours that
one can be used at one time. Also, the queue time could be long at busy periods
when the cluster has a high volume of jobs.

• Amazon EC2
Amazon EC2 (Elastic Compute Cloud) has been the computing platform used
by many renowned companies such as Airbnb and Netflix. It is a very flexible
system in that a user can start a new instance of their preferred distribution of
Linux or Microsoft Windows Server quickly, with various processor and memory
configurations. The user assumes complete control of the system. It acts as a
real machine so that they can install and configure the system as it suits them.

However, there is much overhead to get the instance ready to perform the required
tasks for this project. For instance, it might be required to install the appropriate
packages and libraries every time we start up a new instance, before any task can
take place. Also, it gets quite expensive when more memory and run time is
required, as it is charged per hour for when the instance is running. And, there is
not the luxury of running many jobs, or jobs over multiple machines to perform
operations in parallel.

Given access to a free service providing great computing resource, Balena is the obvious
choice. Although there is a time limit and queue times may vary during the course of
this project, it provides a great platform to run large or memory-intensive code without
much overhead in setting up the servers before they can be used. On the other hand,
while AWS provides complete control on the system and provides great flexibility, the
cost of running a decent server could go up quickly as more memory and computing
time is required.

5https://wiki.bath.ac.uk/display/BalenaHPC/Balena+High+Performance+Computing+Service
6https://aws.amazon.com/ec2/

CHAPTER 2. LITERATURE REVIEW 23

2.7 The Project

In this chapter, we learnt that depth information can be useful for different applications.
We also looked at the NYU Depth Dataset to find that it is a useful dataset which could
be used as our base dataset.

We examined different classification algorithms and found out that BST-DT, RF and
SVM performed the best in benchmark comparisons. There are a few algorithms for
performing boosting with decision trees. We are going to use AdaBoost as it is one of
the most popular implementations of boosting (discussed in detail in section 3.3). We
are going to see how they perform with our dataset in chapter 5. After all, no single
classification method fits all problem. It is not known how well they will perform on
our dataset or whether they will fit for the purpose at all.

After training some classifiers, it is important to conduct many tests to ensure it is
performing properly and well. As discussed, precision-recall rates and cross validation
are helpful tools to evaluate the performance of the classifiers. They ensure that the
classifiers perform properly by examining them empirically.

Also, recall that a validation dataset for testing purposes to find out the predictive
power of a classifier. If there is a huge difference between training and test dataset
error, it is an evidence of overfitting. A test dataset is required to evaluate the final
classifier. It should not be seen beforehand by the classifier until the final classifier is
created, so that the more realistic performance can be measured.

As for tools, we decided to use Python and its associated libraries due to our familiarity
with the language and its popularity for machine learning.

Also, we decided to use Balena to perform machine-learning tasks, as it has much more
processing power and memory than an ordinary laptop. However, we have to take into
account the limitations as a free user on Balena.

Now that we have established a background knowledge about the problem space, we
will next look into detail of how our chosen classificaiton models work formally.

Chapter 3

Technical Background

Before we attempt to train models using depth information from images, we need to
understand the characteristics of them. In the scope of this project, we are going to
focus on three popular models for supervised classification - support vector machine
(SVM), random forest (RF) and AdaBoost (ADA), as mentioned in section 2.3.2.

Looking ahead, we should also look into K-means clustering, an unsupervised classifi-
cation model. Rather than create a classifier using K-means clustering, we intend to
use it to engineer our dataset. We will discuss this in chapter 4.

24

CHAPTER 3. TECHNICAL BACKGROUND 25

3.1 Support Vector Machine (SVM)

Figure 3.1: This illustration shows how SVM works with linearly separable datasets and
a linear kernel. The squared datapoints represent support vectors for their corresponding
class.

y(x) = wTφ(x) + b (3.1)

The linear model above describes the objective of a two-class classification problem.
Given a fixed feature-space, φ(x), there exists at least one pair of weight vector w and
bias b values that gives a solution that separates the input data exactly in the linear
feature space. This input data is known as the training dataset, with input vectors
x1, ...,xN each corresponding to a target t with value -1 or 1, i.e. the two different
classes. ’Separating exactly’ means that

y(xn) > 0 for any point with tn = +1

y(xn) < 0 for any point with tn = −1

hence, tny(xn) > 0 for any point

If there is more than one pair of parameters that achieve the above, the pair with the
smallest generalisation error should be chosen. In SVM, this is done by finding the
decision boundary when the margins are maximised. A margin is the smallest perpen-
dicular distance between the decision boundary and any datapoint. The datapoints
that enable the margins to be maximised are known as the support vectors. This is

CHAPTER 3. TECHNICAL BACKGROUND 26

illustrated in Figure 3.1.

tny(xn)

||w||
=
tn(wTφ(xn) + b)

||w||
(3.2)

Assuming all data is classified correctly, the distance between any point xn to the
decision surface is given by Equation 3.2. Hence, the maximum margin is obtained by
considering the pair of weight vector and bias that maximises the distance between the
boundary and the closest datapoint xn, as illustrated in Equation 3.3. As ||w|| does
not depend on any datapoint, we take out the factor outside of the min function.

argmin
w,b

{
1

||w||
min
n

[
tn
(
wTφ (xn) + b

)]}
(3.3)

3.1.1 Overlapping Classes

Figure 3.2: An elaborated Figure 3.1 showing slack values of points based on their
location in relation to the margin and decision boundary.

In a realistic situation, classes may overlap. If we impose a hard separation between
these classes, the classifier may become too specific and not be able to predict new
data. Therefore, there needs to be a trade-off between splitting the classes perfectly
and misclassifying some of the datapoints.

The slack value describes the status of a datapoint. There are three types of values
as illustrated in Figure 3.2 and Table 3.1. Correctly classified points lie on or within

CHAPTER 3. TECHNICAL BACKGROUND 27

the margin, whereas misclassified points are on the other side of the decision boundary.
Some datapoints lying on the wrong side of the margin but within its side of the
boundary causes margin violation.

Slack Value Description

ξ = 0 Points that are correctly classified.

0 < ξ ≤ 1 Points that lie between the margin and the side of the hyperplane of
its class.

ξ > 1 Points that are misclassified.

Table 3.1: Slack values and their meanings.

3.1.1.1 The Cost Parameter (C)

By allowing some datapoints to be misclassified, we can create a more generalised
SVM classifier. In other words, we impose a soft margin through penalising these
datapoints and relaxing the constraints. In a non-linear dataset, we can think of this
as the smoothness of the fit. The smoother the margins, the less we take into account
the exact position of all datapoints.

min

(
C

N∑
n=1

ξn +
1

2
||w||2

)
(3.4)

This trade off between the margin and misclassification is controlled by the regulari-
sation parameter, cost (C). The bigger C is, the more correctly classified points there
are, the harder the boundary becomes. As C tends to infinity, we have a hard mar-
gin. Hence, we need to minimise the C value in order to find our optimal margin with
Equation 3.4.

Cost (C > 0) Description

Small C A little constrained, large margin.

Large C A more constrained, narrower margin.

C →∞ A hard margin where all constraint is in place.

Table 3.2: The effects of different C values on the margin.

3.1.2 Kernels

By mapping datapoints to higher dimensional feature spaces, originally non-linearly
separable datasets become separable linearly. Recall Equation 3.3, this feature space
raising is represented as φ (xn) which could be of infinite dimensions and unable to be
stored. Instead, in SVM, we can represent this complex decision boundary in efficient
kernel representation without computing φ (xn).

CHAPTER 3. TECHNICAL BACKGROUND 28

Kernel Mathematical Expression

Linear k(x,x′) = xTx′

D-degree polynomial k(x,x′) =
(
1 + xTx′

)d
Radial Basis Function (RBF) k(x,x′) = exp

(
−γ||x− x′||2

)
Sigmoid k(x,x′) = tanh

(
axTx′ + r

)
Table 3.3: Available kernels for SVM Classifiers in the scikit-learn library.

3.1.2.1 The Gamma Parameter (γ)

By taking C into account, we are able to create a more generalised classifier, but it
would still be affected by outliers. The RBF kernel gives another parameter, γ, to
control for the problem and shape of the decision boundary, as shown in Table 3.3.

γ defines how far the influence of each datapoint reaches. The smaller γ is, the further
it reaches. The higher the value, the more the model tries to avoid misclassification.
However, if the value is too high, the decision boundary become too specific, causing
overfitting (illustrated in Figure 3.3). Hence, the optimisation problem now includes
the need to minimise γ so to find the optimal decision boundary.

Figure 3.3: Effects of different γ values in ascending order.

3.1.3 Multiclass Extension

Fundamentally, SVM is a binary classifier designed to split between two classes. Two
approaches, namely one-versus-the-rest and one-versus-one, have been developed to
allow SVM to work with more than two classes by combining multiple binary SVMs.

• One-versus-the-Rest

The approach trains K SVM classifiers for CK classes. Each SVM classifier
yk(x) uses the kth class Ck as the positive class and the rest as the negative class.

CHAPTER 3. TECHNICAL BACKGROUND 29

However, this approach has a few issues.

A major issue is that this causes an imbalance of classes as the positive class will
be much smaller than the rest of the classes. This problem is worsened as more
classes are added to the classifier, as it skews the results to the negative class,
giving a false impression that the classifier has a good performance.

• One-versus-One

Another approach is to train many SVMs with all possible pairs of classes (i.e.
K(K − 1)/2 SVM classifiers). The relevant classifiers then ‘vote’ to return the
highest voted class to give a prediction.

However, it takes significantly longer to converge than one-versus-the-rest due
to the number of classifiers that need to be trained. It trains in O(K2N2) time
compared to O(KN) for one-versus-the-rest. It also takes a long time to predict
– O(K2Ns), where Ns is the number of support vectors (Murphy, 2012).

Figure 3.4: Diagram showing ambiguity regions (green) for (a) the one-versus-the-rest
approach, and (b) the one-versus-one approach (based on figure 4.2 of Bishop (2006)).

Either way, it causes some ambiguity due to the separate evaluation of the classifiers.
Some regions will be assigned to multiple classes due to the multiple classifier setup.
Figure 3.4 illustrates this issue, and we can see that one-versus-one has a much smaller
ambiguity area than one-versus-the-rest, in the expense of a much longer training time.

CHAPTER 3. TECHNICAL BACKGROUND 30

3.2 Random Forest (RF)

We now look at a rather different classification algorithm, random forests. It is an
ensemble method that combines results from different decision trees to give the final
classifier. We start by understanding what decision trees are.

3.2.1 Decision Tree

Figure 3.5: A (classification) decision tree with two classes, A and B, and ‘colour’,
‘shape’ and ‘size’ as features (adapted from Murphy (2012)).

Decision trees, formally classification and regression trees (CART), obtain predictions
by recursively splitting the input space and defining each region with a local model.
Visually, this can be displayed as a tree, with each node representing a split by some
threshold or criterion.

Illustrated in Figure 3.5, the distribution of class labels is stored at each leaf. This gives
a probability for each class satisfying a set of criteria by using the number of positive
and negative samples. For instance, the criteria ’if the colour is red and the size is less
than 10’ gives a prediction for class A p(y = 1|x) = 4/4 = 1 and p(y = 2|x) = 0/4 = 0
for class B. Practically, decision trees are binary such that each node splits into ’yes’
and ’no’ according to some comparison criteria (Murphy, 2012).

For each point x to be predicted, it follows down the tree from the top, known as
the root, to the resulting leaf node, according to the decision criteria learned from the
training data.

f(x) = E[y|x] =
M∑
m−1

wmI(x ∈ Rm) =
M∑
m=1

wmφ(x; vm) (3.5)

Formally, this model is defined as Equation 3.5. Rm is the mth region and vm represents
the feature used to split the node. Also, wm represents the mean response in the mth

region. To generalise the model for classification purposes, this is replaced by the

CHAPTER 3. TECHNICAL BACKGROUND 31

distribution of class labels as mentioned.

f(x) = w0 +
M∑
m=1

wmφm(x) (3.6)

This is essentially an adaptive basis-function model (ABM) (compare equations 3.5 and
3.6) which tries to learn about the kernel rather than having to be specified manually
like that in SVM. Without the need to estimate the kernel parameter which is compu-
tationally expensive, random forest learns much quicker than kernel methods such as
SVM (Murphy, 2012).

3.2.1.1 Growing a Tree

(j∗, t∗) = argmin
j∈{1,...,D}

min
t∈τ

(cost ({xi, yi : xij ≤ t}) + cost ({xi, yi : xij > t})) (3.7)

We require some methods to decide which feature and what value to use for splitting.
The split function in Equation 3.7 returns the best feature and best value by comparing
a feature xij to a numeric value t. This t value is bounded by the feature values from
the rest of the datapoints, stored as τj for each feature j.

As seen in the equation, we want to minimise the cost of picking this feature. Cost is
measured in several ways, namely, misclassification rate, cross-entropy and Gini index.
We can minimise the misclassification rate; we can maximise the information gained
through the split by minimising the cross-entropy ; or, we can minimise the Gini index,
which is the expected error rate.

Cross-entropy and Gini index are preferred because it would choose the feature that
gives a pure split, i.e. contains only one class, in case of a draw in the error rate
(Murphy, 2012). Such a split is more desirable as the class choice is more definite. We
also need to think about how deep the tree should go. If the tree becomes too deep, it
causes overfitting, which we want to avoid as discussed (Murphy, 2012).

CHAPTER 3. TECHNICAL BACKGROUND 32

3.2.2 Linking back to Random Forests

Figure 3.6: The random forest model uses bagging to obtain a prediction by averaging
the results from many decision trees.

Decision tree is known to perform worse than other classifiers due to the instability
of the trees. These trees are called high variance estimators, as their structures are
affected greatly by small changes. A solution is to use Random Forests.

3.2.2.1 Bagging

f(x) =
M∑
m=1

1

M
fm(x) (3.8)

Bagging attempts to reduce the variance by averaging the results from many noisy but
approximately unbiased trees, created by a randomly selected subset of datapoints.
Each tree in the forest casts a vote to decide on the predicted class through averaging
the results of the trees in the forest, as illustrated in Equation 3.8.

However, simply growing multiple trees with different sets of data would create highly
correlated trees, which curbs the amount that the variance can go down. Random
forests attempt to avoid this by not only randomly selecting subsets to be used, but
also the features for building each tree.

The randomness of the dataset for each tree may introduce extra bias in the forest. But,
the averaging of trees usually decrease the variance, which results in a better model.

CHAPTER 3. TECHNICAL BACKGROUND 33

3.3 Boosted Trees

Boosted decision trees (BST-DT) is the best performing classifier according to Caruana
and Niculescu-Mizil’s (2006) comparisons, surpassing both decision trees and random
forests in terms of misclassification error. In this section, we will look into the technical
details of how boosted trees work.

A notable example is AdaBoost, which we will discuss in this section. But first, we
shall look at the concept of boosting.

3.3.1 Boosting

Figure 3.7: Demonstration of how boosted trees function. For each iteration, misclassi-
fied points are given a higher weight (points with a green border). This new dataset is
then used to train the next weak classifier, eventually resulting in a perfectly segmented
classification space. (Adapted from Lazebnik (2016))

Commonly used in conjunction with decision trees, boosting attempts to boost the
performance of weak learners (φm in Equation 3.6) by increasing the weight of misclas-
sified datapoints after training each weak learner (Schapire and Freund, 2012). The
next weak learner will use the newly weighted dataset from the previous weak learner.

One criterion for this to function properly is that these trees must perform better than
random (e.g. if we have 500 classes, the classifier needs to have an accuracy score greater

CHAPTER 3. TECHNICAL BACKGROUND 34

than 1/500 = 0.002). Also, boosting is very resistant to overfitting (Murphy, 2012).

min
f

N∑
i=1

L(yi, f(xi)) (3.9)

Boosting aims to minimise the loss function across all N samples as illustrated in
Equation 3.9. Here, we consider a binary classification with y ∈ {0, 1}, L(y, ỹ) being
the loss function and f being an ABM model.

f∗(x) = argmin
f(x)

= E[Z] (3.10)

In order to optimise for Equation 3.9, we need to find the optimal estimate for f , i.e.
f∗. Formally, we express this as Equation 3.10, where Z is the derivative of the loss
function. Note that E means an estimation.

f0(x) = argmin
γ

N∑
i=1

L(yi, f(xi; γ)) (3.11)

(αm, γm) = argmin
α,γ

N∑
i=1

L(yi, fm−1(xi) + αmφ(xi)) (3.12)

fm(x) = fm−1(x) + αmφ(xi; γ) (3.13)

This is a hard optimisation problem and should be dealt with sequentially with the
method forward stagewise additive modelling (Murphy, 2012). We start by as-
signing the loss function of the chosen algorithm as the initial estimate by Equation 3.11.
Then, we iterate for M times. At each m, we compute αm and γm by Equation 3.12
and use them to evaluate f at m by Equation 3.13, without changing any parameter
at previous m’s. We can early stop once performance drops, even if we haven’t reached
M iterations. By combining fm’s, we will find the resultant strong classifier.

Note that each loss function computes Equation 3.12 differently (Murphy, 2012). In
large, there are four types of loss functions used in various boosting algorithms, notably,
squared error for L2Boosting, absolute error for gradient boosting, exponential loss for
AdaBoost and logloss for LogitBoost.

Now that we have seen the general details of optimising the boosting problem, we shall
see how this applies to AdaBoost.

CHAPTER 3. TECHNICAL BACKGROUND 35

3.3.2 AdaBoost

f(x) =
M∑
m=1

αmφm(x) (3.14)

AdaBoost adapts the boosted algorithm by increasing the weight of each misclassified
point at each iteration. Usually, deicsion trees are used as weak learners, which segment
into areas and use weighted datapoints to improve accuracy, as illustrated in Figure 3.7.
Equation 3.14 shows how weak learners are combined to form a strong learner f(x),
which follows with the foward stagewise additive modelling method.

There are two AdaBoost algorithms - discrete AdaBoost (SAMME in scikit-learn)
and continuous AdaBoost (SAMMME.R in scikit-learn). Discrete AdaBoost, illus-
trated below, uses binary class labels from weak learners, whereas continuous AdaBoost
uses probabilities instead (Murphy, 2012).

Lm(φ) =
N∑
i=1

wi,mexp(−αyiφ(xi)) (3.15)

Again, we consider a binary classification problem here for simplicity. It can be gener-
alised for multiclass problems easily (Murphy, 2012). At each iteration m, the goal is
to minimise the loss function for the corresponding weak learner, φm, which requires
the learning rate parameter, αm.

Here, wi,m is the weight applied to the dataset i and yi ∈ {−1, 1} as the two binary
classes. We use {-1, 1} because it makes it possible to use the sign function to obtain
the class labels for discrete AdaBoost.

3.3.2.1 The Learning Rate Parameter (α)

αm =
1

2
log

1− errm
errm

(3.16)

errm =

∑N
i=1 wiI(yi 6= φm((x)i)∑N

i=1 wi,m
(3.17)

α is the main parameter of AdaBoost. It manages how influence each weak learner is to
the resultant classifier, based on the error rate, as illustrated in Equation 3.16 (Schapire
and Singer, 1999). We want to minimise this while to avoid overfitting. By using weight
and the weighted samples, we obtain the error rate, as illustrated in Equation 3.17.

CHAPTER 3. TECHNICAL BACKGROUND 36

3.4 K-means Clustering

Recall that we briefly looked at unsupervised classifiers in section 2.3. Rather than
learning from a labelled dataset, the algorithm compares values between points and
creates K groups, or clusters, in a multi-dimensional spacei, as specified by the user.

Later on, in Section 4.1.2, we will look at how K-means clustering is utilised to downsize
the training dataset so that we can perform tests with the aforementioned classification
models. But first, let us understand the mathematical basis of K-means clustering.

Figure 3.8: An example of two clusters found with centroids µ1 and µ2 using K-means
clustering.

The algorithm aims to split the data into K clusters where the differences of distances
between the points in the group is smaller than that to the points outside of the group.

Formally, we have to minimise the distortion measure, shown as Equation 3.18, by find-
ing the appropriate {rnk} and {µk}, and through the sum squared differences between
each datapoint and each µk. For each point xn, rnk is a set of binary values indicating
which cluster the point belongs to. µk is a set of vectors associated with the kth cluster,
representing the centres of each cluster.

J =

N∑
n=1

K∑
k=1

rnk||xn − µk||2 (3.18)

Equation 3.18 can be posed as a two-stage optimisation problem. We first find rnk by
fixing µk (the expectation stage, E) and vice versa (the maximisation stage, M):

CHAPTER 3. TECHNICAL BACKGROUND 37

• Stage 1: Finding Optimal rnk

rnk =

{
1 if k = argminj ||xn − µj ||2

0 otherwise
(3.19)

Staring with some randomly selected datapoints from the dataset as µk, we com-
pute the sum squared differences between each point and the proposed cluster
centres. We assign each datapoint to its corresponding closest cluster centres. In
the end, we will have a set of datapoints that belong to a cluster centre, hence
finding groups in the data.

• Stage 2: Finding Optimal µk

2
N∑
n=1

rnk(xn − µk) = 0

µk =

∑
n rnkxn∑
n rnk

(3.20)

These potential clusters might not be optimised to minimise Equation 3.18. So,
We have to do so by computing the derivative with respective to µk as illustrated
in Equation 3.20. Also, notice that by finding µk, we find out that they are the
means of all the datapoints assigned to them, i.e. the centroids of the groups.

The two stages are repeated until the model converges, meaning that no further reas-
signment happens. The end result will be K groups governed by the mean values of
their corresponding cluster. Note that these means may not necessarily be concrete
datapoints from the dataset, but the actual mean of the corresponding clusters.

Recall in section 2.3.2, we mentioned about the Expectation Maximisation algorithm.
Usually used in conjunction with DBSCAN, this can be used by most clustering prob-
lems like K-means as we discussed above.

CHAPTER 3. TECHNICAL BACKGROUND 38

3.5 Summary

So far, we have learnt that SVM contains a main parameter, C, which controls the
trade-off between the margin and misclassification. With an RBF kernel, we can con-
trol the shape of the decision boundary through the γ parameter. By finding the
appropriate parameters, we can obtain an optimal SVM classifier that gives the best
possible accuracy with the given dataset.

Also, we have learnt how the combination of randomised data and features in ran-
dom forests give a much better accuracy and prediction power than a single decision
tree. Comparing with SVM, we have learnt that random forests can be trained faster.
Rather than having to estimate the correct parameters for the base kernel, RF learns
it themselves. However, we do have to choose an appropriate height of the tree and the
number of the trees to train to avoid overfitting.

Boosted algorithms such as AdaBoost use a collection of weak classifiers and weight
up ill-classified datapoints to reduce the bias of the resultant classifier, whereas RF
averages the results of more complicated trees over a random set of datapoints and
features. This means that boosted algorithms are theoretically more efficient, as they
require fewer and simplier trees.

We shall now discuss the overall process used for training these algorithms.

Chapter 4

Methodology

Figure 4.1: The iterative process of building a resultant model for accurate prediction.

Building a successful classifier requires careful considerations from the beginning. The
quality of the dataset used is crucial to producing quality results. We would want to
avoid the computer science analogy of ‘garbage in, garbage out’, in that given some
poor input data, the results will be poor no matter what is done to it.

The NYU Depth Dataset, as discussed in section 2.2, provides a good base dataset
to work with. Using this base dataset, we can transform it into our desired dataset
format, which can then be used to train different classifiers.

In this section, we are going to discuss steps 1 and 2 in the iterative process, as shown
in Figure 4.1. We will train and evaluate some classifiers in the next chapter. We
will not explicitly describe how this is translated into code. Refer to the appendix for
more information about the structure of the code (section A.1) and its documentation
(section A.2).

39

CHAPTER 4. METHODOLOGY 40

4.1 Feature Engineering (Step 1)

Before we can run any supervised classification algorithm, we have to create a labelled
dataset for it to learn from. Labels represent different classes of objects. Some examples
of labels are ’chair’, ’desk’ and ’lamp’. For each label, we form data points, known as
feature vectors, where each point contains information about an object belonging to
that label. Much consideration is required to create a quality dataset that can produce
a generalised classifier that can predict unseen data properly.

The NYU Depth Dataset provides a great starting point for creating the training
dataset required for this project. It contains useful data of many scans at many dif-
ferent scenes. For instacne, these images are already labelled per pixel, which makes
it easier to form our dataset. Here, we are assuming that this densely labelled dataset
is correct, as we are going to measure the performance of our classifiers against this
dataset.

4.1.1 Depth Patches as Features

Depth information of each image scan is used to form the feature vectors. In the NYU
Depth Dataset, each pixel is given a depth value, which represents the distance between
the camera and the real-world position in the scene (as discussed in section 2.1.3). A
simple approach would be to use the depth value of each pixel as features. However, this
would not form an effective classifier, as the distance of one point could not separate
a label from another. For example, a red dot could represent many different classes of
objects in the real world.

The solution is to obtain a patch around each pixel. This provides some context as to
what that pixel might represent by taking its neighbours into account. However, the
size of the patch should not be too small or too large. In both cases, it would be hard for
the classifier to distinguish between labels due to too little information or the presence
of too much noise. After all, machine learning algorithms attempt to create correct
boundaries between data points so that they can be labelled as a class. Considering
the size of the input images (640-by-480 pixels) and the sizes of objects in most scenes,
a 15-by-15 pixels patch (7 neighbouring pixels at each direction) is chosen.

CHAPTER 4. METHODOLOGY 41

Figure 4.2: Showing how each patch represents a window on the original image in this
simplified view. Two classes, red and blue, are represented in this illustration. We shall
illustrate the green patch in Figure 4.3.

Each patch is then normalised by deducting the mean of the patch from each pixel. The
aim is to remove the actual distance between the camera and the object, so that each
patch is approximately independent of factors such as the angle of which the image is
taken from and the actual distance between the object and the camera.

Figure 4.3: An example of how we obtain a patch around a pixel (coordinate) and
normalise it. Note that we are using 15 ∗ 15 patches rather than 5 ∗ 5 patches as shown
in this figure.

4.1.2 Reducing Number of Datapoints

Each image is composed of 640-by-480 pixels, meaning that more than 290 000 patches
are generated from each image. If all 1449 images are used, 460 million patches are
generated. Even more efficient classifiers such as AdaBoost would take a very long time
to train on this unrealistically large dataset. Given the time and technical limitations,
a manageable dataset is required.

CHAPTER 4. METHODOLOGY 42

Let us consider two methods:

• Randomly Select Datapoints
A method for reducing the number of datapoints is to to collect a random number
of datapoints from a random selection of images possessing the label. In this way,
we aim to collect a vast set of data from a wide range of images. The drawback
is that it is uncertain what ‘random’ entails. Importantly, some valuable and
important features may be missed out, making the classifier less powerful.

• K-means Clustering
A better way is to spot the similarities in the data and extract key interest
datapoints. By finding groups within the data, known as clusters, it is possible
to generalise each of them by its centroid. The obtained points provide a more
reliable dataset, as it does not throw away potentially important information
about a label.

By doing this, we can be more certain that our dataset is representative. We
want to represent datapoints and features across all images, rather than picking
random points from a big pool of datapoints and risking missing out key features
as we cannot guarantee these randomly picked points cover all images.

Due to the number of patches present in some of the labels and computational limi-
tations, both methods are used to obtain the datasets. k-means clustering is directly
applied to labels with at least 1,000 and at most 120,000 datapoints, so to compute
within the six-hour time limit on Balena as a free user. A random 100,000 datapoints
are selected for classes with datapoints more than the limit.

By running k-means on these classes, we obtain 1,000 datapoints for each of them.
Classes with at most 1,000 datapoints are left as is to form a combined dataset.

A few exceptions require a random number of images to be chosen before performing
the random pick and clustering, due to the amount of images containing those labels
and the number of patches that are generated for them.

Number of Datapoints Operation

< 1,000 do nothing

> 1,000 and ≤ 120,000 run k-means to extract 1,000 datapoints

> 120,000 select random 100,000 points, then k-means to extract
1,000 datapoints

many images or � 120,000 select random 250 images, select random 100,000
points, then k-means to extract 1,000 datapoints

Table 4.1: Summarising methods used to extract a representative subset for a class.

CHAPTER 4. METHODOLOGY 43

Figure 4.4: Distribution of classes. (Blue) shows the distribution of our dataset before
K-means clustering was used; (Red) shows the distribution after running K-means
clustering on classes with more than 1,000 datapoints.

In Figure 4.4, we see a wide variation in the number of datapoints between classes before
we used K-means to reduce our dataset. As we mentioned, this causes some practical
issues given the resource we have. Also, the imbalance of classes would introduce bias
into the classifier, making it more favourable towards the larger classes. By performing
K-means on the very large classes, we aim to create a representative dataset that limits
the number of datapoints, hence reducing the bias.

4.1.3 Creating Datasets

Some Considerations

To train and measure the performance of the classifier, two datasets are created. The
first dataset is the ‘training dataset’. This dataset should be as large as possible to
enable the classifier to learn the characteristics of the labels effectively. After all, we
aim to obtain high recognition rate with the classifier. This dataset is further split into
two parts - training and validation. The testing part enables the classifier to evaluate
its performance.

A ‘test dataset’ is created to measure a more realistic performance of the classifier.
This dataset is not seen by the classifier during training and testing. It is important
to avoid measuring performance of a machine-learning model with datapoints seen by
the classifier. Otherwise, unrealistic prediction rates would be reported due to feature
leakage (learning from future datapoints). To avoid feature leakage during any stage
of the process, all of these datasets should be mutually exclusive.

CHAPTER 4. METHODOLOGY 44

The Datasets

After reducing datapoints to an amount manageable by k-means for some classes, we
can create the three datasets by combining the datapoints of all the classes. This
combined dataset is split into ’training and testing’ and ’validation’ in a 70%-30%
split. Then, the ’training and testing’ is split into 60% training and 40% testing.
Here, we split the dataset using a stratified approach, in which we try to retain the
original ratio between classes in each subset. The StratifiedShuffleSplit function
in scikit-learn enables us to do this easily.

Some scenes are not used for any of the datasets above, so that they may be used as
another way to assess the performance of the classifier in the end. We will attempt to
predict some of these images later in chapter 5.

We lost some classes as a consequence of not using some scenes. The total number
of classes in the final dataset is 875, compared to 895 classes in the raw NYU Depth
Dataset. With closer inspection, we see that these classes only exist in images in the
same scene but of different angles. They would be of limited usefulness as there will
not be enough data to test if the classifier can recognise that class of objects generally
across different scenes.

CHAPTER 4. METHODOLOGY 45

4.2 Training a Classifier (Step 2)

A classifier is then trained using our dataset. Although the datasets have been carefully
crafted, there is no guarantee that the dataset would provide any useful result. Perhaps
more features are required to provide enough information for the classifier to effectively
split the labelled data correctly, or that our assumption that depth is a useful metric
is ill-founded. We can only find this out by performing tests, which we will be doing in
chapter 5.

One of the important tasks before training our final classifiers is to find the correct
parameters to enable optimal prediction power.

4.2.1 Optimising Parameters

Each classifier has its own tunable parameters to achieve optimal results.

We will attempt two methods for finding an optimal set of parameters. The first way is
to use exhaustive search with a subset of the data with less classes. If these parameters
become stable for a few relatively large subsets, we would assume this works best in
general. The next best option is to perform a randomised search by training classifiers
with a randomly selected subset of parameter combinations. Note that this is bounded
by the training time required.

Recall the parameters required to create useful classifiers of the corresponding algo-
rithms:

• Support Vector Machine
As discussed in section 3.1, the SVM algorithm requires a few optional but in-
fluential parameters depending on the chosen kernel. Cost (C) is required to be
tuned across all kernel. If the selected kernel is RBF, the coefficient of the kernel
(γ) has to be tuned as well to achieve optimal results.

SVM is known to be very slow at training, so considerations have to be taken
when finding these optimal parameters and training the resultant classifier.

• Random Forest
We need to obtain the optimal set of parameters to ensure that the forest does not
overfit. There are numerous parameters required to be specified as discussed in
section 3.2. At the individual tree level, this includes maximum depth, maximum
number of features and the minimum number of samples to allow for a split. At
the forest level, we need to optimise the maximum number of estimators (the
number of trees to be built).

As Random Forest is a much more efficient algorithm, we expect that the classifier
will converge much quicker than SVM and be able to handle all the classes and
data. Similarly, we could at least manually train a few classifiers with different
parameters to find out the optimal settings.

CHAPTER 4. METHODOLOGY 46

• AdaBoost
The main parameter for AdaBoost, as described in section 3.3, is the learning
rate parameter (α). It controls how much each weak learner contributes to the
strong final classifier. We also need to choose whether to use the discrete or real
alogirhtm.

A less important but useful parameter is the maximum number of weak learners
to train. It is less important as the algorithms can early stop when a perfect fit
is obtained before the end.

AdaBoost is known to be even more efficient than Random Forest, as it uses
weaker learners and requires fewer estimators of less depth (Schapire and Freund,
2012).

4.2.1.1 Methods for Finding Optimal Parameters

An exhaustive search, also known as grid search (GridSearchCV in scikit-learn),
can be used to find the best parameters for classifiers that supports them. It trains
classifiers on all combinations of a given list of testing parameters. It returns the
parameters that produce the best score. Cross validation (defaults to 3 folds) is used
to produce this score for comparison.

Sometimes, a classification problem is too big that it is not possible to perform an
exhaustive search. One solution is to run many classifiers with each combination of
testing parameters manually. However, this is a time-consuming task which uses a lot
of computational power.

In such cases, a randomised search can be performed (RandomizedSearchCV
in scikit-learn). It fits classfiers with a randomly chosen set of parameters from the
list of testing parameters. The number of randomly chosen sets is user-specified. This
is to enable the user to control the scope. Similarly, cross validation is applied to obtain
the score for each chosen set of parameters.

It is obvious that there is a trade-off of quality of parameters and speed between grid
and randomised search. To ensure the results are representative when performing
randomised searches, one can run the randomised search for a few times and then
obtain the best results.

Later in chapter 5, we are going to use randomised search for some classification prob-
lems. We are going to obtain 5 randomised sets per search, and perform this search 3
times, and take the parameters from the test that gives the highest accuracy score.

The next step is to train some SVM and Random Forest classifiers with our dataset.

Chapter 5

Results

Recall that our goal is to find out if depth data is a useful dataset for classifying
object classes. In this chapter, we attempt to obtain the best possible results through
optimising their corresponding parameters and discuss how different classifiers might
fit for our problem. We will look at these classifiers:

• Support vector machine with a linear kernel (SVM (linear))

• Support vector machine with a RBF kernel (SVM (RBF))

• Random Forest (RF)

• discrete AdaBoost (ADA)

• discrete AdaBoost (ADA.R)

For clarity, we will be referring to these classifiers by their acronyms most of the time.

Broadly speaking, we have to perform the following tasks:

• finding the range of potentially appropriate parameters using smaller subsets of
our dataset;

• training the ’out-of-the-box’ classifiers with the whole training dataset without
parameter optimisation; and,

• optimising parameters for the highest achieving classifier and evaluate it through
precision-recall and visualising the predicted images.

Optimising parameters could make a big difference, especially for SVM. For instance,
in one of the SVM parameter searching operations, one set of parameters obtained a
cross-validated accuracy of more than twice of another set. Let us now look at how
unoptimised classifiers perform with our dataset.

47

CHAPTER 5. RESULTS 48

5.1 Finding Appropriate Parameters

It is a challenging task to find the optimal parameters for a classification model. Ideally,
we want to run an exhaustive search over all possible parameter values for each classifier.
Realistically and taking into account the constraints of Balena, this task is more difficult
than it appears.

To simplify the problem, we will look at how these parameters change as the number
of classes increases. For each algorithm, we perform grid or randomised search on the
first 2, 5, 10, 50 and 100 classes to find the parameters that produce the best cross
validation score. Note that these are purely patches from some specified number of
classes. We want to find out how the algorithms perform in a binary situation (2
classes), small multiclass situations (5 and 10 classes) and large multiclass situations
(50 and 100 classes).

As more classes are used, we expect the accuracy score to fall, due to the added com-
plexity of the increased number of classes and the distributions of them. Their results
can help us decide if we should continue to pursue these algorithms, and the range of
parameters we should focus on when evaluating the algorithms using the whole dataset.

Recall that the accuracy score is the ratio between correctly classified datapoints and
the whole dataset. Generally speaking, the higher the score, the better the classifier
performs. We will use 3-fold cross validation to find an average accuracy score, which
we will refer to as cross validation score.

Note that we are purely taking datapoints from some number of classes rather than
considering how it fits with classifying datapoints in the context of an image. We will
do so when we have our final classifier trained in section 5.3. Thus, our aim here is
to narrow down the range of values we have to search for, and to get a sense of how
these algorithms scale as the number of classes increases, before digging into the whole
dataset.

No. of
Classes

SVM
(Linear)

SVM
(RBF)

RF
ADA

(SAMME)
ADA

(SAMME.R)

2 61.0% 64.8% 70.1% 67.5% 67.1%

5 35.7% 38.7% 44.0% 39.8% 40.6%

10 32.1% 34.4% 44.1% 31.6% 31.9%

50 13.1% 18.9% 33.8% 9.94% 10.9%

100 10.9% 15.6% 33.6% 5.17% 7.47%

Table 5.1: Best accuracy scores found using grid search with 3-fold cross validation or
the best of 3 randomised searches with 3-fold cross validation for various classifiers –
(in order) SVM with linear kernel, SVM with RBF kernel, RF, discrete AdaBoost and
continuous AdaBoost.

CHAPTER 5. RESULTS 49

Random Forest

Table 5.1 shows the cross-validated accuracy scores of our chosen algorithms. We can
see that RF outperformed all other classifiers. Not only did it give the best scores across
different number of classes, it also scaled the best with our dataset where its accuracy
dropped only by about 10% when going from 10 classes to 50 classes and stabilised
thereafter, compared to around 20% with other algorithms and seeing a continual drop
with more classes.

RF worked well with our dataset with its ability to locate outliers and find subtle
relationships within the input features.

AdaBoost

On the other hand, even though boosted decision trees such as ADA and ADA.R
were found to be the top performing classifier by Caruana and Niculescu-Mizil (2006),
it performed the worst with our dataset. This could reflect the composition of our
dataset. We would expect our dataset to be closely packed together due to the nature
of the data and the normalisation method we used. This also means that the data
could be ‘noisy’ and with outliers, which is a weak point of AdaBoost algorithms.

ADA.R is known to require fewer trees to achieve a similar or even better accuracy
score than ADA. In our parameter searches, we see that ADA used a maximum of 1000
decision trees to compose its final classifier, compared to a maximum of just about 100
trees for ADA-R throughout. This means that if we were going to use an AdaBoost
classifier, we should pick the ADA.R algorithm.

Support Vector Machine

Like many complex problems, our dataset performed better with SVM (RBF) than
SVM (linear), especially with many classes. However, the scores decreased more quickly
when more classes were used to train an SVM (RBF) than SVM (linear).

It appears that SVM could not find a good balance between misclassification and being
specific, due to the complexity of our dataset. Also, it took much longer than RF and
ADA’s to search on the same number of parameters.

5.1.1 Overview

These tests show some interesting characteristics about classification problems in gen-
eral. We expect binary classification to perform well, as it is a rather simple problem
bounded by few factors. As we moved on to multiclass classification (from 2 classes to
5 classes in our case), the scores dropped rapidly. This shows that multiclass classi-
fication gets complicated quickly. When many more classes were used (from 10 to 50
classes for example), the scores dropped rapidly again. The added variance and noise
made it even harder for the classifier to distinguish between their subtle characteristics.

CHAPTER 5. RESULTS 50

Another interesting characteristic is that classifiers have similar or even stronger predic-
tive powers as the number of classes increases, even though the accuracy rates decreases.
This is particularly clear with the SVMs and RF results as shown in Table 5.1.

Take the accuracy scores of RF as an example: it is 20.1% better than random when
it is trained on 2 classes. More impressively, it is 32.6% better than random for 100
classes, which is a 12.5% increase despite a 36.5% decrease in the accuracy score. Hence,
in-depth evaluation is important in understanding the characteristics and performance
of classifiers.

The complexity of our dataset means that RF seems to best suited for our problem
amongst the other two algorithms. It produced the most consistent results and scaled
very well with classification results due to its robustness to outliers and noise. Also,
we saw that SVMs are more resilient to noise than AdaBoost algorithms.

For now, we should continue to pursue all classification models mentioned here, as we
need more concrete information before we can rule out their usefulness to our problem.

5.2 Unoptimised Classifiers

From now on, we are going to examine how effective these algorithms are by using the
whole training dataset. Recall that our training dataset contains 875 classes, which
was created using K-means clustering. With our analysis in the previous section, we
expect to see RF to remain rather stable and be the most effective classifier with our
dataset.

Classifier Cross Validation Score

SVM (Linear) –

SVM (RBF) –

RF 28.7%

ADA 2.33%

ADA.R 3.97%

Table 5.2: 3-fold cross validation scores with unoptimised classifiers.

In fact, RF remained rather stable, achieving an accuracy score of 28.7%, with only
a small drop in the score when compared to the score of 100 classes. Although ADA
and ADA.R performed much worse than RF, they still performed better than ran-
dom (1/875 = 0.0114%). Again, the complicated and closely-packed dataset makes it
difficult for AdaBoost algorithms to be of any use.

We attempted to run the SVM classifiers on the whole dataset but it did not converge
within the time constraints of Balena. This is unfortunate, as it would be a good

CHAPTER 5. RESULTS 51

comparison to see how SVM classifiers fair against RF.

Thus, we will focus on optimising and evaluating an RF classifier as our final classifier.

5.3 Evaluating the Best Classifier

The fact that our training dataset is rather big – containing about 390 000 datapoints
across 875 classes in our training set – makes it difficult to work with. Large exhaustive
searches with cross validation and many parameter candidates would not converge
under the time and memory constraints on Balena.

Our workaround is to run a few models with different parameters informed by the
optimal parameters obtained in our previous tests. We then compute a 3-fold cross
validation score for each of these models and predict the test set with the corresponding
trained model. The score will provide us with some confidence about the performance
of the classifier.

Following on, we should look into the precision-recall rates to understand how these
classifiers actually perform. Remember that precision-recall aims to find out the predic-
tive power and sensitivity of a classifier. We will also attempt to predict some images
with our final classifier to see how it works.

Optimising parameters

Recall that we want to minimise the number of samples for a split to occur
(min samples split), maximise the depth of each tree (max depth) and maximise the
number of trees used (n estimators). We also want to decide on how we want to
weight our classes (n weight).

Name
min

samples
split

max depth n estimator class weight
cross
val

score

Classifier 0 2 – – balanced 25.8%

Classifier 1 2 40 40 None 39.3%

Classifier 2 2 40 40 balanced 42.2%

Classifier 3 2 45 45 balanced 41.6%

Classifier 4 2 60 60 balanced 42.5%

Classifier 5 2 100 100 balanced 43.8%

Table 5.3: Random forest models with various parameter settings and their 3-fold cross
validation scores.

CHAPTER 5. RESULTS 52

Given our knowledge from previous tests, we expect similar or even better performance
from RF than its unoptimised version, if we tune the parameters properly. In fact, as
seen in Table 5.3, we found that depth and the number of estimators in the forest are
the key in obtaining a good RF classifier. Classifier 2 was 13.5% better than classifier
0 which had none of those parameters set.

Also, if we supply an insufficient set of parameters, we risk making the classifier worst
than its ‘out-of-the-box’ state, as we demonstrated with classifier 0 (see Table 5.3) and
the unoptimised RF classifier (see Table 5.2).

We are only testing some parameters here as the constraints on Balena mean that we
could not test a higher maximum depth or number of estimators. Classifier 5, with
the highest values for max depth and n estimators, performed the best with a cross
validation score of 43.8%, which is 15.1% better than an unoptimised RF classifier. We
are going to use this as our ‘resultant classifier’ from now on.

We also found that a ‘balanced’ weighting (i.e. a weight that is inversely proportional
to the class frequency in the input data) gave better results for our unbalanced dataset
(shown in Figure 4.4) than no weighting at all. The small increase suggests that the
RF classifier is rather resilient to an unbalanced situation. Nonetheless, a balanced
weighting produced better results.

Name
cross val

score
test score

time taken
to predict
(min:sec)

Classifier 0 25.8% 34.9% 0:57

Classifier 1 39.3% 44.9% 2:29

Classifier 2 42.2% 46.7% 2:48

Classifier 3 41.6% 45.6% 3:55

Classifier 4 42.5% 48.0% 3:38

Classifier 5 43.8% 49.0% 5:43

Table 5.4: 3-fold cross validation and test scores for some random forest classifiers we
ran.

The influence of the depth of each tree and the number of trees in the forest is shown
more clearly through predicting the test set in Table 5.4.

It is worth noting that while classifier 5 is the highest achieving classifier, the perfor-
mance improvement is marginal. However, the increased number of trees and maximum
depth for each tree in the forest when compared with that of classifier 4 (100 versus
60 for both parameters) mean that the classifier became more complex, causing it to
use up more memory (more than 128 GB of RAM is required) and longer to perform
prediction on the test set. Here, we focus on the performance of the classifier, so we
will continue to use classifier 5 as our preferred classifier.

CHAPTER 5. RESULTS 53

Precision and Recall

We obtained a precision of 51% and recall of 49% on our test dataset with classifier 5.
Here, precision is about ‘how many of the selected items are relevant’ and recall is ‘how
many relevant items are selected’. In other words, our classifier is able to pick up 51%
of the whole set of the test datapoints, of which it correctly classified 49% of them.

This is in-line with our expectation of the classifier through our tests. We expect our
classifier to be accurate no less than 40% of the time. Give the complexity of our
training dataset, RF is holding up to the challenging of noise and outliers, and appear
to continue to perform well with a large multiclass classification problem.

Predicting Images

So far, the evidence we gathered seem to suggest that our approach is performing well.
We should attempt to predict some images with our best classifier, classifier 5, to see
if it would work well with out dataset.

Not dissimilar to how we approached our training and testing stages, we are going to
predict each pixel patch and assign a colour for its corresponding pixel based on its
prediction. By predicting all pixel patch of an image, we can combine them into a
resultant image, and examine if it is able to resemble the scene.

We performed three image tests – an image from a bathroom (Figure 5.1), another
from an office (Figure 5.2) and one from a bedroom (Figure 5.3).

We observe that the precision rates varied. While the bathroom scene performed the
best with a precision rate of 47%, the bedroom scene obtained a precision of 17%. Flat
surfaces with little variation, such as the walls in the bedroom and the tables in the
office scene, did not perform very well. The little variance between surrounding areas
make it difficult for the classifier to decide what they actually are. A flat surface could
potentially be classed as anything.

CHAPTER 5. RESULTS 54

Figure 5.1: (Left) a bathroom scene from the NYU Depth Dataset; (right) our predic-
tion.

Figure 5.2: (Left) an office scene from the NYU Depth Dataset; (right) our prediction.

Figure 5.3: (Left) a bedroom scene from the NYU Depth Dataset; (right) our prediction

Again, this illustrates the complexity of such a classification problem. On one hand, we
appeared to have trained a good enough classifier through the majority of our testing.
On the other hand, not until the last hurdle when we put the classifier into application
could we evaluate if it is performing well.

Chapter 6

Conclusion

Even with the help of a sophisticated and easy-to-use machine-learning library, the
process of producing an accurate and precise classifier requires much consideration.

The first hurdle comes from feature engineering. It is crucial to obtain a well-defined
dataset so that classification methods can generalise the dataset and learn about the
features about different classes. Thorough experimentation is then required to under-
stand which algorithm performs the best with our dataset, and to make sure it is not
just a coincidence that it appears to work.

Recall our goals of this project: we aim to explore if we can use depth to accurately pre-
dict classes of objects in an image using depth information with supervised classification
models, and how to proceed with a large, real-world classification problem.

We successfully trained a random forest classifier, giving a cross validation score of
43.8%, precision rate of 51% and recall rate of 49%. However, it is shown to be an
over-estimate when it is used to predict test images. In this chapter, we will collate
what we have learnt about classifiers and depth data for classification, and discuss in
more detail what we have achieved with our classification problem within the scope of
this project.

55

CHAPTER 6. CONCLUSION 56

6.1 Achievements

Overview

In chapter 3, we learnt about the characteristics of three supervised classification meth-
ods, namely, support vector machine (a kernel method), random forest (an ensem-
ble method) and AdaBoost (a boosting method), for which Caruana and Niculescu-
Mizil (2006) and Amancio et al. (2014) found to perform the best in baseline tests.
We also looked into the unsupervised technique, K-means clustering to facilitate our
feature engineering. Knowledge about these classifiers have also informed our decisions
on training and testing.

Effectiveness of Different Classification Algorithms

Through our tests, we learnt that AdaBoost algorithms did not perform well especially
when there are many classes in the data with our complex and closely-packed dataset.
Our tests clearly demonstrated the weaknesses of AdaBoost algorithms, that they are
prone to noise and outliers. With the preliminary test results shown in tables 5.1 and
5.2, we were able to rule out AdaBoost algorithms for being useful with our dataset or
other datasets with similar set-up.

In our ‘different number of classes’ test (Table 5.1), we found out that support vector
machine (SVM) classifiers did not scale well as we increased the number of classes to
be used in training. Neither a linear nor RBF kernel could define effective decision
boundaries to separate the data.

They also took significantly longer to run due to the number of binary classifiers it needs
to build behind-the-scene. It was soon realised that this weakness became problematic
when we attempted to train on our complete training dataset. No SVM classifier
could converge under the time constraints of Balena. Even though we were not able
to compare the performance on SVM on the whole dataset empirically, the evidence
showed in Table 5.1 suggests that it would not result in a classifier with good enough
quality.

Random forest was found to be the most resilient to our dataset, which displayed its
ability to handle complex datasets. We saw small decreases in cross validation scores
as the number of classes increases in our ‘different number of classes’ test. In fact,
we were able to achieve higher cross validation scores on the whole dataset with some
parameter tuning than this test.

CHAPTER 6. CONCLUSION 57

Performance of the Best Classifier

Our best model was produced using the random forest algorithm. It achieved a cross
validation score of 43.8%, test score (score obtained by predicting the test set) of 49%,
precision rate of 51% and recall rate of 49%.

In hindsight, one might suggest that this is not of high accuracy. However, we have to
bear in mind that a classification problem in the computer vision domain is inherently
difficult due to the complex distribution of the underlying data. The ability to predict
better than random would have been a good achievement. Here, our classifier showed
to be performing much better than random – in fact, 43.7% better.

Parameter tuning is key to achieve the potential ability of a classification algorithm.
As seen in Table 5.3, a well-tuned classifier (classifier 5) performed 18% better than a
poorly-tuned classifier (classifier 0) in terms of cross-validated accuracy.

Our classifier is heading towards the right direction, obtaining good accuracy values. As
seen in our tests, figures 5.1 to 5.3, our classifier performed much better than random.
Even if it did not perform as well as the precision-recall values suggested (which is
expected), we can still observe the outline of the original scene, and in some cases,
recognising a continuous area in the scene, such as the that of the bathroom scene
(Figure 5.1).

Again, this shows the complexity of creating an effective classifier. Empirical evalua-
tions can only provide an estimate of how the classifier would perform. Much appli-
cation evaluations is required to provide a full picture of how the classifier perform in
reality.

CHAPTER 6. CONCLUSION 58

6.2 Other Lessons Learnt

Although random forest classifiers are fast to train (100 estimators with a maximum
depth of 100 on the training dataset took about 20 minutes to train, compared to un-
converged SVM classifiers), they use up a large amount of memory. Memory require-
ment increased significantly as we attempted to build a forest with more estimators or
deeper trees. In fact, we found out that it required more than 512 GB of RAM with
scikit-learn and Python to build a random forest with more than 150 trees.

Our feature engineering approach with K-means clustering took a long time to be
performed. K-means, whilst appeared to have successfully given a representative subset
of the originally very large dataset, took a long time to converge. In fact, we were only
able to obtain centroids with a dataset of at most 120,000 datapoints to compute within
the constraints of Balena.

While we emphasise on accuracy, time and computer resources evidently became the
bottleneck for some of our experiments. For instance, we were unable to obtain an
SVM classifier on the whole dataset, and were unable to run random forest classifiers
with more than 150 estimators as it consumed too much memory.

6.3 Future Work

Building on top of this encouraging result, there are more that we can do to find a
classifier or classification algorithm that works well with our dataset.

In this project, it is fortunate that our approach appeared to have worked. Random
forest is found to be the best classifier for this category of problem through our tests.
Much work can be

More tests should be performed. We could compare the effects different sizes of patches
have on the resultant classifier. In our feature engineering stage, we hypothetically
decided that 15x15 patches would give us a good balance between complexity and
noise for our dataset. We could only justify that we were heading to the right decision
through such comparisons. Also, we could perform more parameter tuning. As we have
seen in Table 5.3, using appropriate parameters would enable the true potential of the
given model.

Moreover, we could introduce new features such as orientation and image (RGB) in-
formation to complement the patches. Before doing so, much consideration is required
as more features may not mean a better outcome but noise.

Few scenes in the NYU Depth Dataset have scans from different angles. Inspired by
SemanticPaint (Valentin et al., 2015) which continuously learn from user defined objects
and ‘paint’ recognised objects with the same colour as the user explores the area, we can
create scans that covers different angles of a scene to achieve a good classifier. With

CHAPTER 6. CONCLUSION 59

different angles, we will be able to learn from more distinctive features of different
objects in the same class, and combine this knowledge about the scene using ensemble
methods not dissimilar to random forest.

Furthermore, we could obtain better predictions by taking into account the information
of the surroundings. As mentioned, Silberman et al. (2012) used support inferences to
improve their segmentation classification problem. Together with the classifier, we
could vote on the most probable class by incorporating the predictions of surrounding
patches, so that outlying prediction can be ‘reverted’ to the correct class.

We should also attempt other sampling techniques to see if they could obtain a bet-
ter representative dataset more efficiently. For example, Markov Chain Monte Carlo
(MCMC) is a more sophisticated and popular algorithm for machine learning-related
data sampling tasks.

Lastly, we could experiment with clustering techniques to see how they compare with
supervised classification techniques. Clustering techniques K-means are used in com-
puter vision for class or instance recognition.

6.4 Final Thoughts

A classification problem is more difficult than it may seem. There are many factors
contributing to the success of a classifier, and it is a challenge to have consider all
possibilities.

In this project, we looked at three different classification models in detail and attempted
to create classifiers with depth information. We then discussed our approach and
performed tests to attempt to find the best classifier within the scope of this project.
We shared some interesting findings where much more can be done in search for the
best classifier utilising depth information to predict classes of objects.

Appendix A

Python Script Documentation

A.1 General Descriptions

There are four main scripts to perform the tasks required for this project:

• extract.py

The script extracts the raw data from the HDF5 binary data format into more
Python friendly objects, such as numpy arrays (as discussed in section 2.5) and dic-
tionaries (maps between unique names and some values). This facilitates feature
engineering and classification tasks using Python and scikit-learn. Number
datasets can be extracted easily, while datasets containing texts and MatLab
maps require more conversion due to the different representation used.

• transform.py

The script contains functions that transform raw data into the final traininng,
testing and validation datasets. By using the depth maps, the script creates
normalised patches around each pixel of sizes specified by the user. Together with
the class label information, these patches can be used by the script to generate a
list of patches for a given class. Then, then random selection (self-implemented
function) and K-means clustering (enabled by scikit-learn) can be performed,
which can then be combined into one list, and then stratifiedly randomly split
into the three datasets.

• model.py

The script performs exhaustive and randomised parameter search, and model
training. It uses the scikit-learn library to perform these tasks. With the
script, classifiers of support vector machine, random forest and AdaBoost can
be optimised and trained with input data created by transform.py. Also, it
produces confusion matrices and precision-recall rates to measure the performance
of the classifier.

• prediction.py

The script is used to predict an entire image and store the predicted results as an

60

APPENDIX A. PYTHON SCRIPT DOCUMENTATION 61

image. A generated colour dicitonary (generated once before this script is being
used) assigns a unique colour to each label. This can be used to visualise the
performance of the resultant classifier by comparing the results with the original
image and segmentation image provided by the NYU Depth Dataset.

A.2 Technical Documentation

A.2.1 General Usage Guide

These scripts can be run on any system that supports Python. To simplify usage, part
of the process uses command line arguments to provide arguments for functions within
the code:

python [script.py] [function] [-option1 value1 ... -optionN valueN]

For each script except extract.py, there are different functions to run different parts
of the code for each script. Each command line function argument contains various
options to act as arguments for those functions in the code. The option -h or -help

shows all available functions and options when the script is being called.

On Balena, a Bash-styled SLURM script is used to specify the properties of a job.
This Python command forms the ‘execution’ part of the code. By using command line
arguments, only one script has to be changed to perform different functions, making
the process much simplier.

The Balena Wiki produced by the Universtiy provides useful guides and documentation
about SLURM scripts.

https://wiki.bath.ac.uk/display/BalenaHPC/Balena+High+Performance+Computing+Service

APPENDIX A. PYTHON SCRIPT DOCUMENTATION 62

A.2.2 Commands for Each Python Script

Script Function Option Description

model.py

svc

-file supply the filename of the input data

-id supply the filename for the output

-k kernel used by the classifier

rf
-file supply the filename of the input data

-id supply the filename for the output

ada

-file supply the filename of the input data

-id supply the filename for the output

-alg
algorithm used - discrete (SAMME) or
real (SAMME.R)

gridsearch

-f supply the filename of the input data

-mdl
model to be trained (ada, ada-r, rf,
svc-linear, svc-rbf)

-m

specify to use do grid (gs) or randomised
(rs) search

Table A.1: Function and options for model.py.

APPENDIX A. PYTHON SCRIPT DOCUMENTATION 63

Script Function Option Description

transform.py

patches

-fn
a patch-related functionality (per pixel -
obtain a patch for each pixel)

-dim specify the dimension of each patch

-img s first image to be processed

-img e last image to be processed

rand
-ls first label to be explored

-le last label to be explored

-n the number of random samples required

lbl

-ls first label to be explored

-le last label to be explored

-d dimension of patches

pts

-n init
the number of runs with different starting
centroids

-n cluster
the number of clusters/ points to gener-
ate

-ls first label to be explored

-le last label to be explored

combine –
combine multiple files into one feature-
target dictionary

data -f filename of the input data

merge –
merge a given set of labels into one new
label

Table A.2: Function and options for transform.py.

APPENDIX A. PYTHON SCRIPT DOCUMENTATION 64

Script Function Option Description

prediction.py

predict

-df filename of patches to be predicted

-mf
filename of the model to be used for pre-
dictions

-save save filename

-s flag whether to save the prediction

-t
whether to predict the test set or an im-
age

gen
-img the image used for the predictions

-p file filename of the prediction file

precall-data
-p filename of the predicted values

-o filename of original dataset

precall-img

-p filename of the predicted values

-img
image we are dealing with (to obatin orig-
inal labels)

save-fig

-img file
filename of the data to be plotted as an
image

-out file
filename of the output image

Table A.3: Function and options for prediction.py.

Bibliography

Alpert, S. et al. (2012), ‘Image segmentation by probabilistic bottom-up aggregation
and cue integration’, IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 34(2), 315–327.

Amancio, D. R. et al. (2014), ‘A systematic comparison of supervised classifiers’, PLoS
ONE 9(4), 1–14.

Bishop, C. (2006), Pattern Recognition and Machine Learning, Information Science and
Statistics, Springer.
URL: https://books.google.co.uk/books?id=kTNoQgAACAAJ

Caruana, R. and Niculescu-Mizil, A. (2006), An Empirical Comparison of Supervised
Learning Algorithms, in ‘Proceedings of the 23rd International Conference on
Machine Learning’, ICML ’06, ACM, New York, NY, USA, pp. 161–168.
URL: http://doi.acm.org/10.1145/1143844.1143865

Chinery, A. (2016), Lecture 15 - Retargetting, Matting.

Davis, J. and Goadrich, M. (2006), The Relationship Between Precision-Recall and
ROC Curves, in ‘Proceedings of the 23rd International Conference on Machine
Learning’, ICML ’06, ACM, New York, NY, USA, pp. 233–240.
URL: http://doi.acm.org/10.1145/1143844.1143874

Färber, I. et al. (2010), On using class-labels in evaluation of clusterings.

Firman, M. (2016), ‘List of RGBD datasets’, http://www0.cs.ucl.ac.uk/staff/M.
Firman/RGBDdatasets/.

Hall, P. (2015), ‘Fundamentals of Pattern Analysis Notes’, http://www.cs.bath.ac.
uk/~pmh/Teaching/Pattern_Analysis_files/notes.pdf.

Izadi, S. et al. (2011), Kinectfusion: Real-time 3d reconstruction and interaction using
a moving depth camera, ACM Symposium on User Interface Software and Tech-
nology.
URL: http://research.microsoft.com/apps/pubs/default.aspx?id=155416

Kohavi, R. et al. (1995), A study of cross-validation and bootstrap for accuracy esti-
mation and model selection, in ‘Ijcai’, Vol. 14, pp. 1137–1145.

Lazebnik, S. (2016).

i

http://www0.cs.ucl.ac.uk/staff/M.Firman/RGBDdatasets/
http://www0.cs.ucl.ac.uk/staff/M.Firman/RGBDdatasets/
http://www.cs.bath.ac.uk/~pmh/Teaching/Pattern_Analysis_files/notes.pdf
http://www.cs.bath.ac.uk/~pmh/Teaching/Pattern_Analysis_files/notes.pdf

BIBLIOGRAPHY ii

Li, L. (2014), ‘Time-of-flight camera–an introduction (texas instruments)’.

Microsoft (2013), Kinect Fusion MSDN Documentation.
URL: https://msdn.microsoft.com/en-us/library/dn188670.aspx

Murphy, K. P. (2012), Machine learning: a probabilistic perspective, MIT press.

Pedregosa, F. et al. (2011), ‘Scikit-learn: Machine Learning in Python’, J. Mach. Learn.
Res. 12, 2825–2830.
URL: http://dl.acm.org/citation.cfm?id=1953048.2078195

Powers, D. M. (2011), ‘Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness and correlation’.

Python (2015), Python wiki: Global interpreter lock.

Ren, X., Bo, L. and Fox, D. (2012), Rgb-(d) scene labeling: Features and algorithms, in
‘Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on’,
IEEE, pp. 2759–2766.

Rother, C. et al. (2004), Grabcut: Interactive foreground extraction using iterated
graph cuts, in ‘ACM transactions on graphics (TOG)’, Vol. 23, ACM, pp. 309–
314.

Sahoo, G. et al. (2012), ‘Analysis of parametric & non parametric classifiers for classifi-
cation technique using WEKA’, International Journal of Information Technology
and Computer Science (IJITCS) 4(7), 43–49.

Sarbolandi, H. et al. (2015), ‘Kinect range sensing: Structured-light versus time-of-
flight kinect’, CoRR abs/1505.05459.
URL: http://arxiv.org/abs/1505.05459

Schapire, R. E. and Freund, Y. (2012), Boosting: Foundations and algorithms, MIT
press.

Schapire, R. E. and Singer, Y. (1999), ‘Improved boosting algorithms using confidence-
rated predictions’, Machine learning 37(3), 297–336.

scikit-learn (2016), scikit-learn Documentation.

Shao, L., Han, J., Kohli, P. and Zhang, Z. (2014), Computer Vision and Machine
Learning with RGB-D Sensors, Springer.

Silberman, N. et al. (2012), Indoor Segmentation and Support Inference from RGBD
Images, in ‘ECCV’.

Szeliski, R. (2010), Computer vision: algorithms and applications, Springer Science &
Business Media.

Valentin, J. et al. (2015), ‘Semanticpaint: Interactive 3d labeling and learning at your
fingertips’, ACM Trans. on Graphics (TOG) .
URL: http://research.microsoft.com/apps/pubs/default.aspx?id=244725

van der Walt, S. et al. (2011), ‘The numpy array: A structure for efficient numerical
computation’, Computing in Science Engineering 13(2), 22–30.

	Introduction
	Aim
	Evaluating Success

	Literature Review
	Kinect Fusion
	Kinect Camera Technologies
	Comparing Structured Light and Time-of-Flight
	Data Representation
	Point Cloud and Depth

	Reconstruction
	Pipeline
	Volumetric Representation

	Segmentation

	Depth Data
	NYU Depth Dataset V2 nyu-dataset

	Classification
	Classification Types
	Supervised Classification
	Unsupervised Classification

	Classifiers
	Notable Supervised Classifiers
	Notable Unsupervised Classifiers

	Performance
	Precision and Recall
	Cross-validation
	Evaluating Unsupervised Classifier

	Tools for Machine-learning Application
	Python
	R
	MatLab
	Choosing a Tool

	Hardware Considerations
	The Project

	Technical Background
	Support Vector Machine (SVM)
	Overlapping Classes
	The Cost Parameter (C)

	Kernels
	The Gamma Parameter ()

	Multiclass Extension

	Random Forest (RF)
	Decision Tree
	Growing a Tree

	Linking back to Random Forests
	Bagging

	Boosted Trees
	Boosting
	AdaBoost
	The Learning Rate Parameter ()

	K-means Clustering
	Summary

	Methodology
	Feature Engineering (Step 1)
	Depth Patches as Features
	Reducing Number of Datapoints
	Creating Datasets

	Training a Classifier (Step 2)
	Optimising Parameters
	Methods for Finding Optimal Parameters

	Results
	Finding Appropriate Parameters
	Overview

	Unoptimised Classifiers
	Evaluating the Best Classifier

	Conclusion
	Achievements
	Other Lessons Learnt
	Future Work
	Final Thoughts

	Python Script Documentation
	General Descriptions
	Technical Documentation
	General Usage Guide
	Commands for Each Python Script

