
Attempting to Regulate Image Generation in a

Generative Adversarial Net using an External

Ranker and Linear Interpolation

Alan Lau

MComp (hons) Computer Science
University of Bath

May 2017

This dissertation may be made available for consultation within the
University Library and may be photocopied or lent to other libraries
for the purposes of consultation.

Signed:

Attempting to Regulate Image Generation in a

Generative Adversarial Net using an External

Ranker and Linear Interpolation

Submitted by: Alan Lau

COPYRIGHT

Attention is drawn to the fact that copyright of this dissertation rests with its author.
The Intellectual Property Rights of the products produced as part of the project belong
to the author unless otherwise specified below, in accordance with the University of
Bath’s policy on intellectual property (see http://www.bath.ac.uk/ordinances/22.pdf).
This copy of the dissertation has been supplied on condition that anyone who consults
it is understood to recognise that its copyright rests with its author and that no
quotation from the dissertation and no information derived from it may be published
without the prior written consent of the author.

DECLARATION

This dissertation is submitted to the University of Bath in accordance with the require-
ments of the degree of Bachelor of Science in the Department of Computer Science. No
portion of the work in this dissertation has been submitted in support of an applica-
tion for any other degree or qualification of this or any other university or institution
of learning. Except where specifically acknowledged, it is the work of the author.

Signed:

Abstract

This project aims to investigate whether we can regulate the generative process of
a Generative Adversarial Net (GAN). Various attempts have been taken to try and
regulate the process. We aim to utilise a ranker and linear interpolation to achieve this

Our investigation has found that our method shows promise but requires more work.
Demonstrating in a synthetic digit dataset, we confirm that linear interpolation in
the latent space helps fill the gap required within images. However, on more complex
datasets, futher investigation, such as the positioning of the ranker, shall provide better
results.

Contents

1 Introduction 1

1.1 Aim . 2

1.2 Structure . 2

2 Literature Review 3

2.1 Neural Network . 4

2.1.1 Structure of Neural Network . 4

2.1.2 Training Phases . 6

2.1.2.1 Step 1: Forward Pass 6

2.1.2.2 Step 2: Backward Pass 7

2.2 Convolutional Neural Network (CNN) 10

2.2.1 Layers . 11

2.2.1.1 Convolutional Layer . 11

2.2.2 The Concept of Deconvolutional Network (DeConvNet) 11

2.2.2.1 Max Pooling . 12

2.2.3 Weight Initialisation . 12

2.2.4 Weight Normalisation . 12

2.2.5 Regularisation . 13

2.2.6 Activation Functions . 14

2.3 Applications in Classification . 16

2.3.1 Strategies . 17

2.4 Applications in Generation . 18

2.4.1 Autoencoder . 18

2.4.2 Generative Adversarial Nets (GAN) 19

2.4.2.1 Deep Convolutional Generative Adversarial Network (DC-
GAN) . 21

i

CONTENTS ii

2.5 Ranking . 21

2.6 Summary . 22

3 Methodology 23

3.1 Datasets . 24

3.2 Data Pre-processing . 25

3.2.1 Cropping . 25

3.2.2 Normalisation . 26

3.3 The Generative Model . 26

3.4 The Ranker . 27

3.4.1 RankSVM . 27

3.5 Ranking Latent Variables . 29

3.6 Latent Exploration . 29

3.7 Evaluating Quality of Network and its Outcome 30

4 Results 31

4.1 Network Performance . 32

4.2 Ranker Performance . 33

4.2.1 Ranking Test Images . 33

4.2.2 Ranking Latent Variables . 34

4.3 Data Exploration . 35

4.3.1 Extrema Interpolation . 35

4.3.2 Iterative Interpolation . 36

4.4 Summary . 36

5 Conclusion 37

5.1 Achievements . 37

5.2 Future Work . 37

5.3 Final Thoughts . 38

List of Figures

2.1 A neural network works as a ‘black box’ to map input to output. It
automatically performs feature extraction and classification internally. . 4

2.2 A neuron with inputs xi and bias b. 4

2.3 This shows a simple neural network with three layers (of which one is
hidden) using logistic regression and sigmoid activation as an example.
We display the inputs as neurons so to demonstrate the various types of
layers in the network. (Adapted from [7].) 5

2.4 A one-hidden layer Convolutional Neural Network. A colour image is
three-dimensional (height, width, colour depth). Each convolutional layer
transforms this input into another three-dimensional space of neuron ac-
tivation. (Adapted from [8].) . 10

2.5 An overview of the results of a convolution. A filter visits each pixel to
calculate a new value by doing element-wise multiplication and summa-
tion. The results of a convolution varies using different filters. The
bottom shows an example where convolution is used to detect edges.
(Adapted from [8]) . 11

2.6 Three commonly used activation function is used, namely (left to right),
sigmoid, hyperbolic tangent (tanh) and rectified linear unit (ReLU), which
exhibit different behaviour. 14

2.7 The red boxes indicate the saturation boundaries of a sigmoid function
where the problem of ‘vanishing gradient’ occurs. The green box indicates
the section that is not affected by the problem. 15

2.8 An inception module that consists of three convolution – 1 × 1, 3 × 3
and 5× 5. Their results are concatenated to form the output. (Adapted
from [13].) . 17

2.9 A convolutional autoencoder with a 1-hidden layer encoder and decoder.
The output of the encoder becomes the input of the decoder. 18

2.10 The diagram denotes the structure of a GAN model, where there is a
generator G (blue) that generates images, and a discriminator D (red)
that determines how likely a given image is real. 19

3.1 Sample images taken from the Digits dataset. 24

iii

LIST OF FIGURES iv

3.2 LFW-a without cropping . 25

3.3 Each image is cropped with 60 pixels removed from each edge to reduce
background noise. 25

3.4 Overfitting occurred while training DC-GAN on Digits. 26

3.5 Figure showing how we will incorporate the ranker with the generator to
order the latent space. 29

4.1 Some generated images by the LFW-a generative model as the number
of training epochs (which informs the number of iterations) grows. . . . 32

4.2 From the test set of 1000 Digits images, we compute their gist descriptors
and create an ordering with the trained ranker. 15 scores are picked
randomly from the ranked values. Here we show the images corresponding
to the scores chosen. 33

4.3 From the test set of 1193 LFW-a images, we compute their gist de-
scriptors and create an ordering with the trained ranker. 15 scores are
randomly picked from the ranked values. Here we show the images cor-
responding to the scores chosen. 34

4.4 This shows the relationship between the ground truth smiliness metric
and the score calculated by the ranker of 1193 test images from the LFW-
a dataset. 34

4.5 Using 1000 latent variables sampled from the normal distribution, we
generate 1000 new images with the Digits GAN. 1000 scores can therefore
be computed. From the sorted scores, we pick 15 samples and display
their corresponding image. 34

4.6 Using 1000 latent variables sampled from the normal distribution, we
generate 1000 new images with the LFW-a GAN. 1000 scores can there-
fore be computed. From the sorted scores, we pick 15 samples and display
their corresponding image. 35

4.7 Interpolation between two extrema of latents from generated Digits images. 35

4.8 Interpolation between two extrema of latents from generated LFW-a images. 35

List of Tables

2.1 Mathematical properties of common activation functions. 14

2.2 Top performers of ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) that have made major contributions to the development of
CNNs since 2012. 16

3.1 Summary of datasets used. 24

3.2 Summary of DC-GANs trained. 26

4.1 Summary of cross-validation results for training the RankSVM ranker for
Digits and LFW-a. An LFW-a image is 250 × 250 at its native image
dimension. 33

v

Chapter 1

Introduction

Human has an incredible brain that is capable of collating different life experiences into
memory, and can combine the intricate details between pieces of memories to create
new, unseen content. Researchers in machine learning have long been attempting to
replicate this through developing algorithms that can fully exploit these intricate details
to generating new, realistic content.

Deep convolutional neural network have seen great success in supervised learning, espe-
cially in discriminative tasks such as classification, localisation and detection. Massive
improvements have been achieved and demonstrated in the ImageNet Large Scale Vi-
sual Recognition Challenge (ILSVRC).

Generating new images is an unsupervised learning problem. The objective is to extract
useful hidden details in some given images and use them to create new datapoints. Well-
known unsupervised learning algorithms such as variations of Boltzmann Machines (pp.
654-687 [1]), Gaussian Mixture Models (e.g. citegmm) and Gaussian Process [2] require
intractable optimisation and approximation methods, which make them difficult to
compute over image datasets which are of high dimensions. Hence, more efficient and
effective methods utilising the structure of deep neural networks have been developed.

Utilising the benefits of deep convolutional neural networks, Generative Adversarial
Nets (GAN) [3] is developed and has become a hot topic in generative models. LeCun,
the major contributor to Convolutional Neural Networks (CNN), reckons that GAN is
the next major development in generative models 1. Although being able to generate
new, near natural images [4], it is difficult to regulate how the generated image looks
like. Little work is done comparing different deep learning generative models in their
generative properties and the ability to regulate the outcome with some metrics.

1Answer by LeCun on Quora on the question “What are some recent and potentially upcoming
breakthroughs in deep learning?”: link [Accessed 24 April 2017]

1

https://www.quora.com/What-are-some-recent-and-potentially-upcoming-breakthroughs-in-deep-learning

CHAPTER 1. INTRODUCTION 2

1.1 Aim

We want to attempt to regulate the generation of images through a pairwise comparison
ranker. We ask the question, “Is it possible to generate a desired image, say of a
certain level of smiliness, rather than any new image randomly?” This type of criteria
is subjective, which means it is hard for a user to quantify by inspection. We will
investigate if a ranker, for instance, a pairwise comparison ranker, is suitable for our
models.

Our goal is to develop a way for a user to generate a desired image given some subjective
metrics of a bounded scale. For instance, a user might want to generate a ‘more smiling’
image or of ‘a smiliness level of 0.5’. Together with a ranker, we attempt to investigate
if a simple method such as linear interpolation enables this.

To limit the scope of the project, we will focus on two major generative algorithms,
namely autoencoder and Deep Convolutional Generative Adversarial Network (DC-
GAN) [4]. These will be further detailed in Chapter 2.

1.2 Structure

We first discuss the related concepts and the development of deep learning in images
applications in Chapter 2. We then describe the methods we have taken in Chapter 3
to reach our results. And subsequently, we discuss the results in detail in Chapter 4.
Finally, we conclude the findings of this project in Chapter 5.

Chapter 2

Literature Review

Traditionally, supervised learning methods such as Support Vector Machine and Ran-
dom Forest have taken the centre stage in machine learning. However, it requires
meticulous feature engineering and manual fine-tuning in order to obtain good results.

When it comes to problems involving complex datasets such as computer vision or
graphics-related problems, not only is it difficult to handle the high dimensionality
and complexity of the raw dataset manually, but it is also challenging to produce an
appropriate feature vector format that is effective in capturing useful and generalised
information. Deep Neural Network, in particular convolutional neural network (CNN),
has been shown to be far more effective than conventional supervised machine learning
approaches in image applications in practise.

In this review, we explore the current state-of-the-art deep learning algorithms, focusing
on those designed for image classification and generation. Through reviewing these
notable implementations, we will reveal the properties that makes them useful, and
explain the components to pursue the aims of this project.

3

CHAPTER 2. LITERATURE REVIEW 4

2.1 Neural Network

Machine learning and pattern analysis have been a key research area in the past few
decades. Traditionally, to make machine learning algorithms work, a lot of effort has
to put into feature engineering, i.e. the process of transforming raw data, such as
image pixels, into a suitable structure that can be used effectively to perform tasks
such as object classification or object detection. My third-year individual project [5]
demonstrated that despite a clear and logical approach to feature engineering, it may
not be the optimal format that provides the highest quality of results. Neural networks
aim to discover this representation purely through its structures and a set of methods.
This is called representation learning.

Figure 2.1: A neural network works as a ‘black box’ to map input to output. It auto-
matically performs feature extraction and classification internally.

The key differentiator between traditional machine learning techniques and deep neu-
ral networks is that deep neural networks learns its features through some defined,
general-purpose functions, rather than manually defined through labour-intensive fea-
ture engineering [6]. In our studied case, it can learn an adequate representation as
feature extraction and classification are jointly performed.

2.1.1 Structure of Neural Network

Figure 2.2: A neuron with inputs xi and bias b.

The units that form a neural network is called neurons. Each neuron takes some input
and maps it to the output using a non-linear mathematical function. In other words,
the purpose of a neuron is to map an input to an output given the input value, weight
and bias.

CHAPTER 2. LITERATURE REVIEW 5

Figure 2.3: This shows a simple neural network with three layers (of which one is
hidden) using logistic regression and sigmoid activation as an example. We display
the inputs as neurons so to demonstrate the various types of layers in the network.
(Adapted from [7].)

Figure 2.3 displays the common architecture of a feedforward neural network, where
the first layer is an input layer and the last layer is an output layer. There can be as
many neurons in each of these layers, including the output layer where we might expect
multiple output options, and also as many hidden layers as required. Each hidden layer
takes the output of the previous layer as an input and computes an output. In other
words, there is no cycle in this type of networks, and information only flows from one
end to another.

The three layers in Figure 2.3 represent each of the three types of layers in a common
neural network:

• Layer L1: This is the input layer. It takes the initial input and feed it into the
network.

• Layer L2: This is the hidden layer. Their output are produced by the neurons
and are not usually directly observed. Each hidden layer projects into another
space.

• Layer L3: This is the output layer. It gives the final output of the network.

There can be ambiguity in how the network structure is referred to. Here, we define
that this is a 1-layer network, i.e. with respect to the number of hidden layers. However,
when we refer to the mathematical elements of the network, we take into account the

CHAPTER 2. LITERATURE REVIEW 6

input and output layers. For instance, the output of the hidden layer is a
(2)
i , denoting

that it is from layer L2, instead of layer L1.

2.1.2 Training Phases

There are two steps in training a neural network. The first step is the forward pass,
where the input is passed to produce an output using the initial parameters. The
second is the backward pass, where a method called backpropagation is used to allow
the results of the cost function to be passed backwards from output to input, so that
new parameter values can be calculated.

2.1.2.1 Step 1: Forward Pass

As shown in Figure 2.2, each neuron takes some input values and produces an output.
In a multi-layer neural network, the output of a neuron acts as the input for another,
until the final output is created.

hw,b (x) = f
(
wTx+ b

)
= f(z) (2.1)

Mathematically, each neuron acts as a transformation unit that calculates an activation
given some input. We take Figure 2.2 as an example. The neuron takes x1, x2 and x3
as input, with associated weights Wi and a bias b for the whole input. We denote W
as a vector containing all the weights associated to the input. This gives a hypothesis
hW,b (x) that is used to fit to the input. The output is created by using a non-linear
activation function, generally in the form f : R 7→ R, to map from input to output,
as shown in Equation (2.1) and visualised in Figure 2.2. We will discuss more about
activation functions in Section 2.2.6.

The initialisation of the weights are crucial. If all weight is identical initially, all neuron
will give the same output, which defeats the purpose of a neural network where it
combines differing parts to obtain an output [7, 8]. In other words, ‘symmetry breaking’
is maintained by making each weight different. Although larger weights allow a greater
symmetry breaking effect, this can cause the activation functions in neurons to saturate,
making them permanently disabled [1].

We can expand this to cover the whole network shown in Figure 2.3. The neural
network now has parameters (W, b) =

(
W (1), b(1),W (2), b(2)

)
. We denote the association

of weights between units of two adjacent layers by W
(l)
ij , i.e. the connection between

neuron j in layer l and i in layer l+ 1. Note that this is in a ‘reverse’ order that we will
be useful for Step 2 of the training process. Similarly for biases, we use bli to represent
the bias associated with unit i in layer l.

Hence, we can calculate the activation for each neuron in the network, denoted as a
(l)
i

to represent i-th neuron output at layer l:

CHAPTER 2. LITERATURE REVIEW 7

a
(2)
1 = f

(
W

(1)
11 x1 +W

(1)
12 x2 +W

(1)
13 x3 + b

(1)
1

)
(2.2)

a
(2)
2 = f

(
W

(1)
21 x1 +W

(1)
22 x2 +W

(1)
23 x3 + b

(1)
2

)
(2.3)

a
(2)
3 = f

(
W

(1)
31 x1 +W

(1)
32 x2 +W

(1)
33 x3 + b

(1)
3

)
(2.4)

hW,b (x) = f
(
W

(2)
11 a

(2)
1 +W

(2)
12 a

(2)
2 +W

(2)
13 a

(2)
3 + b

(2)
1

)
(2.5)

In the same vein as we defined z in Equation (2.1), we can simply by defining z(l) =
W (l−1)a(l−1) + b(l−1), realising that for every subsequent layer in a feedforward layer,
we calculate its activation by:

z(l+1) = W (l)a(l) + b(l) (2.6)

a(l+1) = f
(
z(l+1)

)
(2.7)

This generalisation enables networks with varying number of hidden layers and neurons
in each hidden and output layer possible.

2.1.2.2 Step 2: Backward Pass

In order to update the parameters (weights and biases) of the network, we require
a cost function, an optimisation algorithm and an effective method that extends the
effect of the optimisation across the network. Let us first describe cost functions and
the optimisation algorithms briefly:

• Cost Function
A cost function is used to calculate the error of the output compared to the
ground truth. There exists many loss functions for different purposes. Variations
of cross-entropy are popular choices for classification applications [8], and mean
square error (MSE) is used for regression problems. We aim to minimise this
function through an optimisation algorithm.

• Optimisation [9]
Variations of gradient descent is used to optimise the cost function in a deep neural
network. Gradient descent mathematically guarantees that we find the direction
of steepest descend, so that we can alter the weight accordingly [8]. Mini-batch
gradient descent (MGD) is the general choice, as it combines the benefits offered
by batch gradient descent (BGD) and stochastic gradient descent (SGD).

BGD computes the gradient of the cost function for the whole dataset at each
parameter update, which takes a long time and requires all the data to be available
in memory. On the other hand, SGD updates the parameters for each datapoint,
making the cost function to fluctuate greatly as it moves towards convergence.

CHAPTER 2. LITERATURE REVIEW 8

MGD combines the two by performing an update for each small batch, B, which
can be computed efficiently when compared to BGD and a more stable conver-
gence than SGD.

We usually employ an optimisation algorithm for the learning rate of gradient
descent, as it is difficult to pick an optimal value that maximises the chance
of a timely convergence. Used in notable networks such as deep convolutional
generative adversarial network [4], Adam [10] is a recommended algorithm [8]
that attempts to maximise the learning step size while keeping it stable [10].

A common setup setup is to use a mean-squared error (MSE) cost function, backpropa-
gation to calculate gradients across the network, and mini-batch gradient descent with
batch size of B as the optimisation method to learn from the calculated gradients so to
optimise the cost function. Equation (2.8) demonstrates the MSE example. We gen-
eralise any cost function with Equation (2.9), where L demonstrates any cost function
with network output and ground truth as input.

J(W, b) =
1

B

B∑
k=1

(
1

2
‖hW,b

(
x(k)

)
− y(k)‖2

)
(2.8)

J(W, b) =
1

B

B∑
k=1

(
L
[
hW,b

(
x(k)

)
, y(k)

])
(2.9)

The backward pass aims to minimise this function. We use mini-batch gradient descent
to perform this optimisation. Although MSE and other cost functions could reach a
local optima due to the shape of the function [7], practical experiences such as [11] have
shown that it general performs fine.

Backpropagation provides an efficient way to perform such optimisation. Originally
proposed as an efficient and generic method to compute gradients, Rumelhart et al. [12]
demonstrated that it allows much faster training time in neural networks than previous
methods. The method uses partial derivatives to maintain its efficiency.

W
(l)
ij = W

(l)
ij − α

∂

∂W
(l)
ij

J (W, b) (2.10)

∂

∂W
(l)
ij

J(W, b) =
1

B

B∑
k=1

∂

∂W
(l)
ij

J
(
W, b;x(k), y(k)

)
(2.11)

CHAPTER 2. LITERATURE REVIEW 9

b
(l)
i = b

(l)
i − α

∂

∂b
(l)
i

J (W, b) (2.12)

∂

∂b
(l)
i

J(W, b) =
1

B

B∑
k=1

∂

∂b
(l)
i

J
(
W, b;x(k), y(k)

)
(2.13)

We aim to update the parameters using gradient descent as shown in Equations (2.10)
and (2.12). They are updated by deducting partial derivates of the cost function.
Backpropagation computes these derivates efficiently using Equations (2.11) and (2.13).

Combined with the forward pass (step 1), backpropagation works as follow:

1. Forward pass (step 1) computes activations for neurons in all nl layers

2. For each neuron in the output layer nl, we can simply compute the error by
comparing the output activation and the true value. Mathematically, we utilises
the partial derivatives of the activation functions:

δ
(nl)
i =

∂

∂z
(nl)
i

L
[
hW,b

(
x(k)

)
, y(k)

]
= −

(
yi − a(nl)

i

)
· f ′
(
z
(nl)
i

) (2.14)

3. Working backwards, we compute the error for each neuron in the hidden layers
layers nl − 1, nl − 2, ..., 2. The error of a hidden layer neuron is calculated using
a weighted average of the error terms that use its activation as an input. Hence,
in mathematical notation,

δ
(l)
i =

sl+1∑
j=1

W
(l)
ji δ

(l+1)
j

 f ′
(
z
(l)
i

)

4. With these error rates and activations, we can then compute the partial deriva-
tives of the cost function for each datapoint. This is then used by gradient descent
to update the parameters of the network, as seen in Equations (2.10) and (2.12).

δ

δW
(l)
ij

J(W, b;x, y) = a
(l)
j δ

(l+1)
i (2.15)

δ

δb
(l)
i

J(W, b;x, y) = δ
(l+1)
i (2.16)

Variations of Gradient Descent and Backgropagation have seen great success across
supervised (e.g. [11, 13]) and unsupervised applications (e.g. [4]), especially in image-
related networks.

CHAPTER 2. LITERATURE REVIEW 10

2.2 Convolutional Neural Network (CNN)

Figure 2.4: A one-hidden layer Convolutional Neural Network. A colour image is three-
dimensional (height, width, colour depth). Each convolutional layer transforms this
input into another three-dimensional space of neuron activation. (Adapted from [8].)

For a problem involving images, a conventional neural network as shown in Figure 2.3
is not sufficient. Its input is represented in a single vector form. If we simply reshape an
image to a single vector, we lose details about the internal structure such as dimensions
and correlation between pixels. Also, the large amount of parameters required can easily
overwhelm a traditional neural network, causing it to overfit. It increases quadratically
as the image size grows. For instance, given a colour image of size 200 × 200 × 3, it
requires 120 000 weights for each neuron. More generally, given the number of colour
channels of c and image dimensions of n×m, we require weights c× n×m, which can
be reduced to a αc × n2. As a network would require more than a few neurons in a
hidden layer, this means the weights required increases even more rapidly [8].

On a higher level, we require to be invariant to properties such as translation and
rotation. We want a network that is capable of understanding the underlying structure
that represents a particular group of objects, rather than learning the specific position
of which an object is placed.

A different approach is proposed. In the 1980s, Fukushima [14] demonstrated how a
Convolutional Neural Network (CNN) can be used to recognise pattern within simple
digit and letter images, without the need of manual feature engineering. LeCun et
al. [15] further extended the existing work and demonstrated outstanding results with
simple image datasets, such as hand-written digits, on classification tasks and face
detection, which led to a highly accurate US zip code recogniser that handles a single
image of a zip code without requiring explicit segmentation [16].

CHAPTER 2. LITERATURE REVIEW 11

2.2.1 Layers

2.2.1.1 Convolutional Layer

Figure 2.5: An overview of the results of a convolution. A filter visits each pixel to
calculate a new value by doing element-wise multiplication and summation. The results
of a convolution varies using different filters. The bottom shows an example where
convolution is used to detect edges. (Adapted from [8])

Convolution is the underlying technique that makes this possible. The purpose of
convolution is to capture the internal structures of images. It is difficult to distinguish
between two categories of objects under very similar settings of two categories of objects
simply by inspecting the individual pixels. Using many different filters in each hidden
layers allows various features to be captured.

Combined with a neural network structure and making it deep, it identifies the invari-
ance hidden underneath the raw pixels of input images. It starts from high to low
level. Low level detail includes the shape or edges of a particular object within the
scene, whereas high level detail may show an area of interest.

2.2.2 The Concept of Deconvolutional Network (DeConvNet)

Zeiler and Fergus identified that there is a lack of understanding about the internals as
to the reasons that AlexNet performed significantly better than conventional machine
learning algorithms. Through extending upon AlexNet, they introduce the DeConvNet.

It acts as a visualisation tool that traces the details extracted from an input image

CHAPTER 2. LITERATURE REVIEW 12

through the network. Given a trained CNN, a DeConvNet is attached to a convolutional
layer.

Activations are obtained by passing an image through this network. For a chosen
layer and a feature map in the CNN, it takes its strongest activation and set all other
activations in the layer as 0. This feature map is then passed into the DeConvNet.

Through reversing the process of the CNN in the DeConvNet, picking the top activa-
tions, and the same filters and pooling settings (or, ‘switches’) as the CNN, visualisation
of the invariance learnt by each convolutional layer becomes possible [17]. This enables
further improvements to the construction of CNNs through visual inspection of their
inner workings.

2.2.2.1 Max Pooling

Max pooling layers are used to reduce the spatial size of the activations along the
network. This reduction in size limits overfitting as the number of parameters reduces
through this process [8]. It is usually used once between two convolutional operations as
a downsampling method, and eventually creating a single vector called a latent variable.
This is how a CNN automatically create a feature from an input.

2.2.3 Weight Initialisation

Network initialisation is important in training neural networks. For instance, if each
neuron is given the same initial weight, they will all produce the same output and
creates the same gradient, which defeats the purpose of a neural network where it aims
to obtain different details through activating different neurons. [8].

A simple method to overcome this is by assigning small random numbers as weights
for each neuron, but requires normalisation to the weights to keep the variance of the
output of neurons to 1 [8]. However, this careful tuning requires much effort and is
hard to get right [18].

2.2.4 Weight Normalisation

A popular solution is to use Batch Normalisation (BatchNorm) developed by Ioffe and
Szegedy [18]. Consider a CNN trained using backpropagation and mini-batch stochastic
gradient descent, a BatchNorm layer is placed before just after a convolutional layer but
before non-linear transformation. It shows it achieves efficient and effective training
performance that requires less concise initialisation of hyperparameters, and at times
regularisation such as Dropout is not needed [18].

CHAPTER 2. LITERATURE REVIEW 13

µB =
1

B

B∑
k=1

xk (2.17)

σ2B =
1

B

B∑
k=1

(xk − µB)2 (2.18)

x̂k =
xk − µB√
σ2B + ε

(2.19)

BNγ,β (xk) = γx̂k + β (2.20)

It aims to keeps the distribution of non-linearity activations stable throughout the
network by enforcing a unit Gaussian distribution [8]. In this way, training is less
affected by the value of hyperparameters such as learning rate.

In essence, the algorithm (Equation (2.20)) aims to learn the scale γ and shift β re-
quired in a mini-batch B = {x1 . . . xk}, through computing the normalisation (Equa-
tion (2.19)) using the mean (Equation (2.17)) and variance (Equation (2.18)). [18]

2.2.5 Regularisation

Regularisation methods are used to avoid overfitting. Two popular methods are L2
regularisation and max norm constraints. L2 regularisation adds the term 1

2λw
2 to

penalises the cost function each weight w, where λ signifies the regularisation strength.
This cause the cost function to decay linearly towards zero, such that training is stopped
when the performace starts to deteriorate [19]. The advantage of doing so is that it
encourages the network to use all inputs [8].

Max norm constraints use a different strategy to perform regularisation, in that it keeps
an upper bound on the weight w for each neuron [8]. This protects the network from
saturating if it is initialised with inappropriate parameters, such as too high a learning
rate.

These methods are often used to alongside Dropout, created by Srivastava et al. [19],
that is efficient and simple to run [8]. One can think of Dropout as a way of adding a
Bernoulli noise r to the hidden units in a subnetwork before non-linear transformations.
It aims to minimise overfitting by training an exponential number of subnetworks where
each omits some units randomly determined by probability p, with network parameters
updated according to the training dataset. This prevents the network from fitting on
sampling noise, rely on other hidden units to rectify mistakes and believe them as
the complex relationship within the training dataset [19]. Mathematically, we simply
incorporate this noise to Equations (2.6) and (2.7) to achieve Dropout, by replacing a
with â, an element-wise product between the input and r, i.e. â = r ∗ a.

CHAPTER 2. LITERATURE REVIEW 14

2.2.6 Activation Functions

Figure 2.6: Three commonly used activation function is used, namely (left to right), sig-
moid, hyperbolic tangent (tanh) and rectified linear unit (ReLU), which exhibit different
behaviour.

The power of deep neural networks lies in the fact that non-linear activations are used
to map raw input data to output. Complex datasets are often non-linear in nature.
Using non-linear functions enables intricate details within the data to be captured, and
preserve translational invariance especially in high dimensional datapoints [20].

Also, we want to project the data into a spce that is easy to work with. Through
bounding the data within an interval avoids calculus overflow. More importantly, neural
netowrks work by stacking the results of the hidden layers. Without the use of non-
linear activation functions, stacking these layers together has the same effect of having
only one hidden layer, since W1W2x = Wx. Hence, the effort of stacking multiple
layers becomes wasteful.

Function Range Equation Derivative

sigmoid [0,1] f(z) = 1
1+e−z f ′(z) = f(z)(1− f(z))

Hyperbolic
tangent (tanh)

[-1,1] f(z) = ez−e−z

ez+e−z f ′(z) = 1− (f(z))2

Rectified Linear
Unit (ReLU)

[0, ∞] f(z) =

{
0 if z < 0

z otherwise
f ′(z) =

{
0 if z < 0

1 otherwise

Table 2.1: Mathematical properties of common activation functions.

Figure 2.6 shows three popular non-linear activations being used in deep neural net-
works. Each possesses characteristics that make them useful. Not only are activation
functions used to automatically create latent variables, it is an integral part in training
the network.

CHAPTER 2. LITERATURE REVIEW 15

Figure 2.7: The red boxes indicate the saturation boundaries of a sigmoid function where
the problem of ‘vanishing gradient’ occurs. The green box indicates the section that is
not affected by the problem.

sigmoid was used in early neural network models but its downsides have seen it replaced
by tanh. More recently, ReLU has become very popular, especially in neural networks
that are designed to handle images [8]. The main reason that it is the least favourable
activation function is that it tends to a zero gradient rapidly as it approaches the tails
of the function, a problem known as vanishing gradient when it reaches the saturation
boundaries, where f ′(z)→ 0 during training. Gradient is essential in training a neural
network, as seen in the backward pass section (Section 2.1.2.2). This would stop the
training of the network.

tanh, a rescaled version of sigmoid, is preferred over sigmoid as it is centred in zero. This
reduces the chance in which the parameters becoming all positive or negative, which
makes the weight (gradient) update happen in a ‘zigzag’. This allows the network to be
trained more efficiently. However, it still suffers from the problem of vanishing gradient,
as it is still a sigmoid -based function.

ReLU performs better than sigmoid -related functions, most notably in CNNs. It has
shown the best practical results and which is the most popular choice [6].

There are a few reasons that ReLU has become popular. Firstly, it retains the proper-
ties of a linear function and does not have the inherent saturation problem in sigmoid
and tanh [8]. Together with the fact that no exponential calculation is required, these
enable a much faster training speed as evidenced in AlexNet [11].

To avoid neurons being neglected if there occurs a large gradient propagating through
the network during training, Leaky ReLU aims to improve upon ReLU by giving a
small negative slope (e.g. 0.01z) rather than 0. Mathematically, we have:

f(z) =

{
αz if z < 0 (α ≥ 0)

z otherwise

However, there are inconsistent reports of success of using Leaky ReLU, so care must

CHAPTER 2. LITERATURE REVIEW 16

be taken when choosing this as the activation function of a network [8].

2.3 Applications in Classification

Algorithm Top-5 Error Rate Year Remarks

AlexNet [11] 15.4% 2012

• First major success of deep CNN
• Next best had an error of 26.2%
• Use of ReLU as activation

ZF Net [17] 11.2% 2013
• Introduces DeConvNet to visu-

alise hidden layers

VGG
Net [21]

7.3% 2014

• Only use 3× 3 filters
• Consecutive convolutions before

max pooling to simulate larger
filters while significantly reduc-
ing the number of parameters
• Similar results to GoogLeNet

but much simpler structure

GoogLeNet
[13]

6.7% 2015

• Introduces inception module to
create a concatenated output of
multiple operations to maximise
the detail captured with minimal
impact on number of parameters

ResNet [22] 3.6% 2015

• Very deep network – 152 layers
• Introduces residual block to cal-

culate small changes with re-
gards to input, which is easier to
optimise and addresses the sat-
uration problem as more layers
are stacked together

Table 2.2: Top performers of ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) that have made major contributions to the development of CNNs since 2012.

In recent years, major improvements to computational power leads to the use of graph-
ical processing units (GPUs) to handle machine learning tasks [23]. All the networks
mentioned in Table 2.2 utilises multiple GPUs to train on large datasets over multiple
days. This also leads to the rapid development and discovery of the capabilities of
CNNs to handle much more complicated imagery datasets, as seen in breakthroughs in
classification [11] and artificial intelligence agents in computer games [24]. The work
of LeCun laid the fundamentals and underlying theories that are still relevant today.

CHAPTER 2. LITERATURE REVIEW 17

Deshpande [25] provides a clear summary about some significant contributions made
towards the development of classifying CNNs in the past 5 years. These major re-
search effort are realised through the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) competition, where teams try to build the best machine learning al-
gorithm to handle tasks such as classification and detection.

Although our project is focused on the generative prospect of CNNs, reviewing the
current state of supervised applications enables us to understand the winning strategies
which informs unsupervised applications.

2.3.1 Strategies

Figure 2.8: An inception module that consists of three convolution – 1 × 1, 3 × 3 and
5× 5. Their results are concatenated to form the output. (Adapted from [13].)

These successful networks use different strategies to achieve better efficiency. For in-
stance, GoogLeNet introduces the inception module (illustrated in Figure 2.8) to ef-
ficiently capture more details in one layer by concatenating the results of multiple
operations. It would require many more parameters if they were layered out sequen-
tially. VGG Net uses multiple small filters before downsampling to achieve a similar
effect of a large filter, which would otherwise require more parameters. ResNet uses
a very deep network but introduces the residual block to combat the inefficient and
untraceable learning by directly mapping from input to output in a normal network.

Sometimes a simple structure could match the performance of one that is much more
complex. Efficiency apart, VGG Net uses a much simpler network structure and per-
formed similarly to GoogLeNet.

It is generally believed that the deeper a network is, the better it will perform, as more
intricate details can be captured. However, it is found that a degradation problem oc-
curs (not caused by overfitting) when the network starts to converge. This overwhelms
the accuracy and makes it decrease rapidly again [22]. This causes a higher training

CHAPTER 2. LITERATURE REVIEW 18

error, hence inherently higher testing error. Inception units in GoogLeNet and residual
block in ResNet attempts to fix them.

2.4 Applications in Generation

Generative neural networks learn in an unsupervised manner, which goal is to learn to
generate images that closely relates to real-life images. It is difficult to capture intri-
cate details within a real-life image, such as the lighting and natural skin tone. More
technically, historical generative models based on Boltzmann Machine requires approx-
imating the values derived from intractable algorithms such as Maximum Likelihood
and Markov chain [1, 3].

There are three main approaches to generative models — autoencoder, autoregression
and adversarial. They can be CNN-based or with strong mathemtical background that
utilises Markov chains. In particular, the adversarial framework, Generative Adversar-
ial Nets (GAN) [3], and its applications such as Deep Convolutional GAN (DC-GAN) [4]
have shown good promise. In the following, we shall discuss their properties and some
of their successful applications.

2.4.1 Autoencoder

Figure 2.9: A convolutional autoencoder with a 1-hidden layer encoder and decoder.
The output of the encoder becomes the input of the decoder.

There is a long history of autoencoders for the purpose of dimensionality reduction or
feature learning. With more research into the theoretical connection between latent
variable models and autoencoders, autoencoders have become a candidate for effective
generative modelling [1].

The goal of an autoencoder is to generate an output that closely resembles the input.
An autoencoder contains an encoder and a decoder. The encoder contains one or more
hidden layers and is used to generate a latent variable (code) that describes the input,

CHAPTER 2. LITERATURE REVIEW 19

i.e. h = f(x). This can be thought of as a ‘compression’ process, where it tries to
represent the input in a smaller space.

The decoder then takes latent variables of this form and passes them through its hidden
layers, i.e. r = g(h). It aims to ‘decompress’ the code and create a reconstruction of
the input.

At training, autoencoders are designed to only be able to closely resemble but not
perfectly copying the training input, as the aim is to learn about the intricate detail
hidden within the training data using convolution [1]. If an autoencoder can perfectly
replicate the training input, no learning is achieved, and is likely caused by overfitting.
By learning useful details from the training data, given some new latent variable, the
decoder should then be able to create some new output that has never been seen by
the autoencoder before.

Deep Convolutional Inverse Graphics Network (DC-IGN) designed by Kulkarni et
al. [26] that can interpret individual elements of an image so to generate new images of
the same object but different poses and lighting. In a similar fashion as Figure 2.9 and
cues from GoogLeNet [13] as discussed in Section 2.3.1, it disentangles the latent vari-
able into separate features, such as pose and direction of light. They demonstrates that
this creates much better reconstructions, as it is easier to control individual elements
than correlated values within a vector [26].

2.4.2 Generative Adversarial Nets (GAN)

Figure 2.10: The diagram denotes the structure of a GAN model, where there is a
generator G (blue) that generates images, and a discriminator D (red) that determines
how likely a given image is real.

The popularity and success of CNN in discriminative applications leads to the research
done by Szegedy et al. [27]. They found that neural networks in general are unstable
with image inputs that are visually invariant but with small variations in the underlying
data, even with a state-of-the-art deep CNN at the time such as AlexNet [11].

Also, by exploiting the fact that the smoothness assumption does not hold in neural

CHAPTER 2. LITERATURE REVIEW 20

networks due to their non-linearity, they showed that it is possible to optimise the
perturbations required to trigger a misclassification. Applying the findings of [27],
Goodfellow et al. [3] describes the Generative Adversarial Nets (GAN) to train gener-
ative models using an adversarial approach.

There are two models in this framework — a generative model, G and a discriminative
model, D. The two models are trained together and aimed to counteract each other.
The purpose of G is to generate new images that aim to cause the discriminator to
believe it is from the training dataset, and D acts as a classifier that calculates the
probability that a sample is from the training data rather than from G [3].

Mathematically (all from [3]), both G and D are in the form of a multi-layer neural
network. We define the generator as G(z; θg), which takes noise variables z with prior
pz(z), and parameters θg. It aims to learns the distribution pg over training dataset x,
and maps the noise input to the training data space to generate adversarial examples.
For the discriminator, we define it as D(x; θd). It maps the input space to a single
value that denotes the probability D(x) that the sample is from x.

At the same time, we aim to maximise the probability of assigning the correct la-
bel with both x and G(z; θg) inputs, and create samples that trick D by minimising
log (1−D (G (z))).

This can be demonstrated as a minmax game between G and D for which the function
V reveals the optimal:

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD (x)] + Ez∼pz(z) [log (1−D (G (z)))] (2.21)

GAN converges when then generator has perfectly learnt the distribution of the input
data pg = pdata, i.e. D(x) = 1

2 [3]. Mini-batch stochastic gradient descent and back-
propagation are used to update the weights as demonstrated in Section 2.1.2.2. Given
a batch of B samples per batch, a hyperparameter n and learning rate η, we perform
the following updates over some number of iterations:

1. For each iteration and for n steps, we obtain a new mini-batch of B samples
from both the noise and training data. We then ascend the parameters of the
discriminator D:

θD = θD − η∇θd
1

B

B∑
k=1

[
logD

(
x(k)

)
+ log

(
1−D

(
G
(
zk
)))]

(2.22)

2. For each iteration, we obtain a new mini-batch of B samples from the noise. We
then descend the generator G:

θG = θG− η∇θg
1

B

B∑
k=1

log
(

1−D
(
G
(
zk
)))

(2.23)

CHAPTER 2. LITERATURE REVIEW 21

GAN stands out as an important milestone for generative modelling because it can be
trained just with backpropagation to compute the gradients, without the need to ap-
proximate the Markov chain values, which makes it much easier to train in practise [3].

However, convergence is not guaranteed and can cause underfitting in GAN [3]. It is
possible that G and D causes V to fluctuate rather than reaching the optimal [1]. Also,
GAN algorithms require careful hyperparameter tuning to achieve stability [1].

2.4.2.1 Deep Convolutional Generative Adversarial Network (DC-GAN)

GAN is difficult to scale for larger images and deeper generative models [4], DC-GAN [4]
aim to improve this through various techniques learnt from how discriminative CNNs
are built.

There are five main characteristics of DC-GAN:

• Contrary to traditional discriminative CNNs, DC-GAN incorporates the idea
from the all convolutional net [28] that all pooling (in D) and unpooling (in
G) layers are replaced by convolutional (strided convolutional) and deconvolu-
tional (fractional-strided convolutional) layers. where no pooling and unpooling
layer is used in G and D, as it is found that having the network learn its own
upsampling and downsampling respectively.

• No fully connected layer is used, but the latent input to G and output of the last
convolutional layer of D are simply reshaped to fit the next layer [4].

• BatchNorm (as discussed in Section 2.2.4) is used to enable a stable learning.

• Mainly ReLU, Leaky ReLU activations are used to produce high quality results.

• Together with backpropagation, mini-batch stochastic gradient descent with Adam
and tuned parameters are used to learn the weights throughout the networks.

It is interesting to note that CNN structures in many notable networks, such as DC-
GAN, are defined through performing experiments. For instance, DC-GAN would not
work without BatchNorm but there is no proven explanation for this, apart from the
fact that it.

2.5 Ranking

Our project aims to provide map concrete values to some subjective metric that is hard
to quantify. Ranking is a method that we may use. It is used to create a hierarchy
within some given datapoints. It is an important task for information retrieval tasks
such as search. For instance, the success of a search engine relies on its ability to locate
the most relevant documents governed by some input keywords.

CHAPTER 2. LITERATURE REVIEW 22

Broadly, there are three main approaches to learning a ranking model [29]: pointwise,
pairwise and listwise:

• The pointwise approach
The approach takes the feature vector of one single document and uses a scoring
function f to give it a predicted relevance value to signify its ordering. It only
considers each document individually without taking into account their depen-
dencies amongst each other. This poses as an disadvantage to tasks that relies
on the close consideration between items, such as a search engine.

• The pairwise approach
Pairs of feature vectors are compared between themselves. ‘1’ is usually assigned
to signify the more relevant of the pair and ‘-1’ to the other. In mathematical
terms, given a pair of vectors (xu, xv), there exists a scoring function f and an
indicator function IA that outputs 1 if the comparison A, for example f(xu) ≥
f(xv), is valid or 0 otherwise. This is performed for each pair elements to obtain
yi = 2 · IA − 1. This comparison enables relationships between the pair to be
captured. It enables the direct application of classification methods to classify
between pairs.

• The listwise approach The approach takes ranked lists of feature vectors as
input and learn a function that orders the lists. It aims to minimise the loss
funciton that maps the list to their orders.

A pairwise approach seems to be most fitting to our problem, as there would not be
exact values that users can specify. We can provide a fixed scale which can limit the
ambiguity if otherwise an exact value is required. We shall further investigate this in
the next section.

2.6 Summary

In this literature review, we looked at the state of CNNs. The rapid development of
CNN is driven by a few key factors, including the availability of a large labelled image
dataset and the vast increase in computational power offered by GPUs.

We also discovered that the design of the architecture of a network is a creative process.
The number and type of layers, and the structural composition depend on some asserted
assumptions or through experimentation with various settings. And, we have briefly
looked at the three approaches to ranking which would guide us to pick the right ranking
algorithm that fits our task.

Chapter 3

Methodology

In the previous chapter, we look at the current state of CNN and how they are used in
supervised problems such as classification, and unsupervised problems such as image
generation. We saw that GAN has become a popular type of generative model. DC-
GAN and other implementations have demonstrated that GAN can be used to generate
high quality and sharp images. However, they lack the ability to control the generated
images. By passing generated images from the network to a ranker, we aim to be
able to impose an order on the latent variable about a subjective metric, and therefore
produce a desired new image based on a given score not known to the ranker before.

In essence, we plan to train two DC-GANs on two different datasets with associated
rankers to enable us to rank their latent variables. Then, we aim to take an ‘iterative
linear interpolation’ approach to generate new images with a requested level of a metric.

In this chapter, we describe the setup we have and the steps taken in attempt to govern
the production of new images.

23

CHAPTER 3. METHODOLOGY 24

3.1 Datasets

Dataset Datapoints
Chosen

Attribute

Datapoints
with

Required
Attribute

Type Complexity

Digits 10 000 Rotation 10 000 Synthetic Simple

LFW 13 235 Smiling 13 143 Real Difficult

Table 3.1: Summary of datasets used.

The chosen datasets are a digits-of-1 dataset (‘Digits’) [30] and an aligned version of
the Labelled Faces in the Wild dataset (‘LFW-a’) [31, 32]. They provide us with a large
enough dataset to test our proposed method of iterative linear interpolation within the
constraints of this project, and attribute labels that is helpful for training our rankers.
By investigating how our method performs on a simple, synthetic dataset enables us to
establish how it may be useful, while attempting this on a more complicated, real-life
dataset enables us to explore the extend of which the method would work.

Figure 3.1: Sample images taken from the Digits dataset.

Digits contains digits of ‘1’ of various rotation and thickness against a black background.
We choose rotation as the attribute that we want to control image generation on. As
seen in Figure 3.1, it is the most prominent feature that can be observed, which makes
it easier to decide on whether one image has more ‘positive’ (clockwise) or ‘negative’
(anti-clockwise) rotation.

On the other hand, LFW-a is much more complicated in that it contains more noise
with varying foreground and background objects. The alignment causes hard black
border around the edges, which could be problematic as they may be picked up as
being prominent features of the image. Here, we pick smiliness as the metric we want
to control our image generation on, as it is an observable though subjective metric.

CHAPTER 3. METHODOLOGY 25

Figure 3.2: Sample images takes from the LFW-a dataset [32], which is the LFW
dataset [31] aligned with a commercial-grade system.

3.2 Data Pre-processing

Despite a CNN is designed to perform automatic feature engineering to produce latent
variables on their own, some data pre-processing is still crucial to enable the network
to learn the information we want it to. This is particularly true for our ranker as we
will see later in Sections 3.4 and 4.2.

3.2.1 Cropping

Figure 3.3: Each image is cropped with 60 pixels removed from each edge to reduce
background noise.

Cropping enables the features we desire to be in the centre and removes unwanted
noise, so that the network and ranker can pick up on the correct features. If there
are elaborate objects apart from our subject, this could hinder the performance of our
training, especially in the ranker due to its ability to scale with increasing dimension.
However, this has to be performed carefully. Removing too much of an image away
could reduce diversity in the dataset. Without diversity, the network would not be able
to learn much meaningful information to generate new pictures.

CHAPTER 3. METHODOLOGY 26

3.2.2 Normalisation

Image data are normalised in two ways to ensure that it is centred at zero and within
a given range. For all datasets, we normalise the image data at training and testing
time so that they fall into the range [-1, 1]. It enables us to work on the same scale
across images so to allow the network take them with equal importance.

3.3 The Generative Model

We use DC-GAN [4] as our model, with slight modifications to the code to handle data
pre-processing, specific input paths and visual outcome. However, we avoid changing
the hyperparameter settings, such as the batch size and image size. As researched, we
found out that the success of a CNN is usually through experimenting with various
structures and settings, rather than with strong mathematical proofs.

Dataset Epochs
Iterations (Epoch × Images / Batch

Size)

Digits 400 400 ∗ 8000
64 = 50 000

LFW-a 1000 1000 ∗ 10 950
64 ≈ 117 000

Table 3.2: Summary of DC-GANs trained.

The number of iterations is one of the main values that govern the amount of informa-
tion captured by the network through the training set. The general idea is to have as
many iterations as possible. Through visual inspection of the generated images of net-
works with different number of epochs (as we keep the given batch size from [4]) given
time and other constraints, we find these value produces the most visually plausible
results.

Figure 3.4: Overfitting occurred while training DC-GAN on Digits.

However, the effect of the number of iterations can be limited by the number of training
datapoints and diversity in the dataset. For instance, we attempted to train the Digits

CHAPTER 3. METHODOLOGY 27

network with more iterations but it caused overfitting and was unable to generate any
digits of 1.

After training the model, we remove the discriminator and just use the generator, as
we are only interested in generating new images.

3.4 The Ranker

With the help of the discriminator, the model fits noises sampled from the normal
distribution to plausible outputs. So far, we have a trained network simply by providing
it with pre-processed images with an appropriate number of iterations, which enables
us to generate new, unseen images (see Epoch 400 of Figure 3.4).

However, there is not a way that allows us to create an image governed by a specific
metric, especially one that is hard to quantify through inspection. As mentioned, we
aim to achieve such generation of images through imposing an order in the latent space
with the help of a ranker, so to provide users with a quantitative way to specify ‘how
much’ of a metric they want to observe in a generated image.

3.4.1 RankSVM

We pick RankSVM as our ranker algorithm for a few reasons. The algorithm provides
a generic interface that works with different types of data. Also, as it is based on
Support Vector Machines (SVM), it inherits its ability to handle higher dimension data
and being generally stable [29].

We use the efficient implementation of Chapelle et al. [33]. It uses the Newton method
to improve efficiency so that it works on large number of comparisons, as opposed
to the original implementation by Joachims [34] which struggles to scale [33]. This
implementation requires three inputs:

• A: a sparse matrix of pairwise comparisons of the input data

• C: a vector of hyperparameters for each pair that indicates the amount of training
error penalisation

• X: a matrix containing 1-dimensional feature vectors (feature vectors derived
from our training datasets in our case)

By using the ground attribute labels provided by our chosen datasets, we can compute
A through comparing them in pairs exhaustively. For instance, in the Digits case, we
have labels on the predefined rotations of the given dataset. Each row of A should
contain exactly a ‘1’ for the larger pair element and ‘-1’ for the smaller with no other
values. We use 1000 datapoints to train each of our rankers due to memory limitation.

CHAPTER 3. METHODOLOGY 28

As SVM is a supervised classification algorithm, we can perform qualitative evaluation
to measure its performance. In other words, this enables us to perform cross-validation
to locate the best hyperparameter c out of a subset that we tested with. Briefly, cross-
validation subdivides the training set into a training and a validation set. We perform
this 10 times (i.e. a 10-fold cross validation) to obtain the average training error against
the validation set. We then train on the whole set with the chosen c value, which is
given to each pair to form C.

We require some methods to extract features to form the data matrix X. Like other
traditional machine learning methods, careful feature extraction is key to the success
of the model. Trivially, one might simply flatten an image into a vector to use as the
input, but the correlations between pixels, rows and columns are lost, making it difficult
to generalise. Also, the size of each feature will increase quickly if such method is used.
Here, we use the GIST descriptor as our feature extractor [35]:

• GIST Descriptor

GIST provides an efficient way to extract features of an image without requir-
ing elaborate processing such as segmentation and dealing with each object and
regions in the scene [35]. It captures information of an image at a low dimen-
sional space through convolutions using Gabor filters, with the resultant vector
encapsulating perceptual information such as naturalness and ruggedness. This
information turns out to reliably capture and describe the information stored
within an image.

It produces a vector of 512 elements regardless of the size of the input image. This
enables us to control the scale whilst capturing useful and precise information that
we can use to create a ranking.

With these inputs, we train a ranker which provides us with a vector w. To obtain a
score from the ranker, we simply have to multiply a gist feature vector by w.

CHAPTER 3. METHODOLOGY 29

3.5 Ranking Latent Variables

Figure 3.5: Figure showing how we will incorporate the ranker with the generator to
order the latent space.

After obtaining a trained network and a ranker, we can now consider using them to-
gether to achieve the ranking step of our goal towards regulating image generation. We
require to rank in the latent space. In order to do so, the ranker acts as an extended
part of the generative model.

We first use new latent variables sampled from the normal distribution and pass z into
the generator to obtain new generated images. With GIST, we obtain new features
and multiply it with the learnt ranker weights w. By ordering the scores, we obtain a
rank of the latent variables.

3.6 Latent Exploration

A brute force method for obtaining images of all ranks would simply be computing an
infinite amount of images so that we can have an image for each score. However, this
is not achievable so alternative methods have to used. The use of a simple algorithm
can be beneficial as it is quick and easy to perform.

In order to explore in the latent space, we first perform linear interpolation between the
extrema latents found in the ranked values. Interpolation enables a smooth transition
from one extreme to another, acting to fill in the gaps. As the dimensions of the latent
variable is rather low with respect to that of an image, interpolation within the latent
manifold should enable a smooth transition from one extrema to another. Then, we
plan to adopt an iterative approach in performing interpolation to obtain an image
closet to the score requested.

The iterative approach algorithm is as follows:

1. Find the neighbouring latents (zA and zB) closest to the target

2. Perform interpolation between zA and zB to obtain the interpolation matrix I

CHAPTER 3. METHODOLOGY 30

3. Obtain ranked scores for I

4. Repeat from Step 1 until one of the neighbours reaches a score of ε(5, target)

3.7 Evaluating Quality of Network and its Outcome

With traditional or mathematical-proven machine learning models, there exists many
quantitative methods in evaluating the outcome. For instance, precision-recall rates are
used to examine the performance of a supervised model of classification. For our ranker,
as discussed in Section 3.4.1, we perform cross-validation as a method to optimise our
parameter that gives the highest accuracy rate.

However, GAN is difficult to evaluate as there is no meaningful metrics that can provide
a value to describe the subjectivity of whether an image looks ‘good’. Visual inspection
remains the method used to evaluate the quality of the output images.

Chapter 4

Results

In this chapter, we discuss the results of what we have attempted to perform. This can
be divided into three main parts:

• Network Performance

• Ranker Performance

• Data Exploration

In this chapter, we explain the results we have achieved and discuss about how this can
be useful to inform future work.

31

CHAPTER 4. RESULTS 32

4.1 Network Performance

Figure 4.1: Some generated images by the LFW-a generative model as the number of
training epochs (which informs the number of iterations) grows.

Visual inspection, although subjective, is the way used to evaluating the ‘quality’ of
the output from a GAN. As it is seen, with more than 10 000 and a batch size of 64,
we would have already run more than 234 000 iterations, there are still learning to be
done. Due to hardware access limitation, we have only trained until 1500 epoch before
reaching a near optimal network.

For our investigation, this should not pose a critical problem, as the inspected generated
images are mostly plausible with a visible smiliness.

CHAPTER 4. RESULTS 33

4.2 Ranker Performance

Dataset
Cropping
(all sides)

Best C value
Cross-validation

Accuracy

Digits N/A 10 98.80%

LFW-a N/A 0.01 68.15%

LFW-a 30 0.01 72.43%

LFW-a 40 0.01 74.21%

LFW-a 50 0.01 77.69%

LFW-a 60 0.01 80.87%

Table 4.1: Summary of cross-validation results for training the RankSVM ranker for
Digits and LFW-a. An LFW-a image is 250× 250 at its native image dimension.

We train a ranker for each of the two datasets we use. As mentioned, we perform
cross-validation to quantify the performance of the ranker. With Digits, we achieve a
ranker with 98.8% accuracy at cross-validation. This is expected due to the simplistic
nature of the dataset.

On the contrary, the LFW-a ranker requires data pre-processing to achieve a good
enough accuracy. We achieve an accuracy rate of 80.87% at cross-validation when the
images are cropped to show only the face, as shown in Figure 3.3.

4.2.1 Ranking Test Images

Figure 4.2: From the test set of 1000 Digits images, we compute their gist descriptors
and create an ordering with the trained ranker. 15 scores are picked randomly from the
ranked values. Here we show the images corresponding to the scores chosen.

CHAPTER 4. RESULTS 34

Figure 4.3: From the test set of 1193 LFW-a images, we compute their gist descriptors
and create an ordering with the trained ranker. 15 scores are randomly picked from the
ranked values. Here we show the images corresponding to the scores chosen.

Expectedly, the Digits benefits from its simplicity and a highly accurate ranker. We
observe that the digits nicely rotate clockwise from left to right. Given the complexity
of the subtle differences in smiliness, the LFW-a ranker performs well in general. We
can see that ‘high smiliness’ faces tend to the positive scale, whereas ‘low smiliness’
images tend to the left.

Figure 4.4: This shows the relationship between the ground truth smiliness metric and
the score calculated by the ranker of 1193 test images from the LFW-a dataset.

Whilst the calculated score increases, the corresponding ground truth labels increases,
though we observe that there is a large variance within the original scores. We do not
observe this range of variance for Digits. This could be explained by the complexity of
the dataset. The faces in LFW-a contains noisy backgrounds and various poses that
would affect the features extracted by the ranker.

4.2.2 Ranking Latent Variables

Figure 4.5: Using 1000 latent variables sampled from the normal distribution, we gen-
erate 1000 new images with the Digits GAN. 1000 scores can therefore be computed.
From the sorted scores, we pick 15 samples and display their corresponding image.

CHAPTER 4. RESULTS 35

Figure 4.6: Using 1000 latent variables sampled from the normal distribution, we gen-
erate 1000 new images with the LFW-a GAN. 1000 scores can therefore be computed.
From the sorted scores, we pick 15 samples and display their corresponding image.

We rank the latent variable through generating its corresponding images with the gen-
erator, and then passing it onto the ranker, as demonstrated with Figure 3.5. We see
that for both datasets that the rankers are working well, where we can see the extrema
at both ends. This also suggests that it is possible to rank at the latent space, which
is part of our aim to enable us to generate a desired image.

4.3 Data Exploration

We perform linear interpolation in the latent space to try to explore if it is possible
to create plausible intermediate images between two given images. We first perform
an extrema interpolation, i.e. between the most negatively and positively scored latent
variables. We then explain how an iterative interpolation approach could help to achieve
our goal.

4.3.1 Extrema Interpolation

Figure 4.7: Interpolation between two extrema of latents from generated Digits images.

Figure 4.8: Interpolation between two extrema of latents from generated LFW-a images.

CHAPTER 4. RESULTS 36

We interpolate between the latent variables that produces the lowest and highest scores
obtained through the generated images, from 1000 latent variables sampled from the
normal distribution.

In the Digits example, we observe that the interpolation works to generate the interme-
diate intervals. The most prominent feature within these images is rotation and there
are little noise due to the near uniform black background across all images. This means
that it is easy to control this visible feature.

We can also see the smiliness transformation and smooth transition occurring between
the two extrema in the LFW-a interpolations. However, this smooth transition has
some side effects. For instance, it has created a mapping between the two images , such
that as the image becomes more like the extremum it is heading towards.

4.3.2 Iterative Interpolation

Supported by the results above, we can deduce an interactive interpolation approach
in finding the best match to a given value of the criterion, which is detailed in Sec-
tion 3.6. Using the linear interpolation between the neighbouring images of a target
value provided by the user, we can reduce our search space and attempt to achieve the
closest images desired by the user.

4.4 Summary

We have trained two plausible rankers on two contrasting datasets – a simple, synthetic
dataset called Digits, and a difficult, real-life dataset called LFW-a. Despite the fact
that the faces images are much more complex with the variations within the datasets,
it obtains an acceptable level of pairwise comparison accuracy.

We have established that the simple algorithm of linear interpolation can be useful for
generating intermediate images between two given images through their latent variables.

Looking at the LFW-a dataset – whilst we are able to rank and generate images with
varying smiliness through linear interpolation, it also alters other correlated factors as a
side effect. There is no control available within the latent space in this setup to govern
individual metric while keep others constant. Other methods should be explored.

Chapter 5

Conclusion

5.1 Achievements

We have studied whether it is possible to regulate image production in GAN through
the means of an external ranker and linear interpolation. On one hand, our approach
shows that it is possible to rank images, even more complex, real-life images to some
extend, and utilise linear interpolation to create plausible intermediate images with an
increasing level of the given metric. We see this clearly displayed in the Digits datset.
However, when an image becomes complex with many internal correlations, it becomes
difficult to regulate just one metric in the latent space.

Whilst inconclusive, our investigation has led us to believe that simple methods such
as linear interpolation can be useful when used with other methods.

5.2 Future Work

Building on top of our understanding of generative models and our investigation, there
are other methods to govern the generative process of images. One method is to
incorporate the ranker into a GAN model. By concatenating ranker score information
to the latent variable, we attempt to impose further restrictions of the information
learnt by the network. This enables us to segment the information into chunks that
can then be regulated independently. We have seen examples that the concatenation
of multiple parts of information together have produced good results in classficiation
tasks with GoogLeNet [13] and in Deep Convolutional Inverse Graphics Network [26].

With more work, we believe the system we aim to produce can help with generating
new 3-dimensional features such as body shape and height. This can also be useful in
motion capture scenarios where new movements can be generated.

37

CHAPTER 5. CONCLUSION 38

5.3 Final Thoughts

Regulating the generative process of a GAN is a complicated task. Our investigation
has found that an external ranker and linear interpolation may not be sufficient in
dealing with complex data, such as those with a lot of noise.

In this project, we reviewed the current state of convolutional neural networks in classi-
fication and generation. We then discussed our methodology in an attempt to regulate
the generation of images in a GAN. We have discussed the strengths and limitations of
our method.

Bibliography

[1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT Press,
2016.

[2] Carl Edward Rasmussen. “Gaussian processes for machine learning”. In: (2006).

[3] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural in-
formation processing systems. 2014, pp. 2672–2680.

[4] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised representa-
tion learning with deep convolutional generative adversarial networks”. In: arXiv
preprint arXiv:1511.06434 (2015).

[5] Alan Lau. “Using Supervised Machine-learning Techniques to Identify Objects
Classes in Images with Depth Data”. In: unpublished manuscript (2016). url:
https://www.melaus.xyz/files/dissertation.pdf.

[6] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Nature
521.7553 (2015), pp. 436–444.

[7] Andrew Ng. “Sparse autoencoder”. In: CS294A Lecture notes 72.2011 (2011),
pp. 1–19.

[8] Andrej Karpathy. “Cs231n: Convolutional neural networks for visual recognition”.
In: Online Course (2016).

[9] Sebastian Ruder. “An overview of gradient descent optimization algorithms”. In:
arXiv preprint arXiv:1609.04747 (2016).

[10] Diederik Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (2014).

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification
with deep convolutional neural networks”. In: Advances in neural information
processing systems. 2012, pp. 1097–1105.

[12] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning rep-
resentations by back-propagating errors”. In: Cognitive modeling 5.3 (1988), p. 1.

[13] Christian Szegedy et al. “Going deeper with convolutions”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2015, pp. 1–9.

[14] Kunihiko Fukushima and Sei Miyake. “Neocognitron: A self-organizing neural
network model for a mechanism of visual pattern recognition”. In: Competition
and cooperation in neural nets. Springer, 1982, pp. 267–285.

i

https://www.melaus.xyz/files/dissertation.pdf

BIBLIOGRAPHY ii

[15] Yann LeCun et al. “Generalization and network design strategies”. In: Connec-
tionism in perspective (1989), pp. 143–155.

[16] Ofer Matan et al. “Reading handwritten digits: A zip code recognition system”.
In: Computer 25.7 (1992), pp. 59–63.

[17] Matthew D Zeiler and Rob Fergus. “Visualizing and understanding convolutional
networks”. In: European conference on computer vision. Springer. 2014, pp. 818–
833.

[18] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift”. In: arXiv preprint arXiv:1502.03167
(2015).

[19] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks from
overfitting.” In: Journal of Machine Learning Research 15.1 (2014), pp. 1929–
1958.

[20] Quoc V Le et al. A Tutorial on Deep Learning Part 1: Nonlinear Classifiers and
The Backpropagation Algorithm. 2015.

[21] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for
large-scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[22] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016,
pp. 770–778.

[23] Dave Steinkraus, I Buck, and PY Simard. “Using GPUs for machine learning
algorithms”. In: Document Analysis and Recognition, 2005. Proceedings. Eighth
International Conference on. IEEE. 2005, pp. 1115–1120.

[24] Volodymyr Mnih et al. “Human-level control through deep reinforcement learn-
ing”. In: Nature 518.7540 (2015), pp. 529–533.

[25] Adit Deshpande. The 9 Deep Learning Papers You Need To Know About (Un-
derstanding CNNs Part 3). 2016. url: https://adeshpande3.github.io/

adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-

About.html.

[26] Tejas D Kulkarni et al. “Deep convolutional inverse graphics network”. In: Ad-
vances in Neural Information Processing Systems. 2015, pp. 2539–2547.

[27] Christian Szegedy et al. “Intriguing properties of neural networks”. In: arXiv
preprint arXiv:1312.6199 (2013).

[28] Jost Tobias Springenberg et al. “Striving for simplicity: The all convolutional
net”. In: arXiv preprint arXiv:1412.6806 (2014).

[29] Tie-Yan Liu et al. “Learning to rank for information retrieval”. In: Foundations
and Trends in Information Retrieval 3.3 (2009), pp. 225–331.

[30] Kwang In Kim, Florian Steinke, and Matthias Hein. “Semi-supervised regression
using hessian energy with an application to semi-supervised dimensionality re-
duction”. In: Advances in Neural Information Processing Systems. 2009, pp. 979–
987.

https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html
https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html
https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html

BIBLIOGRAPHY iii

[31] Gary B. Huang et al. Labeled Faces in the Wild: A Database for Studying Face
Recognition in Unconstrained Environments. Tech. rep. 07-49. University of Mas-
sachusetts, Amherst, 2007.

[32] Yaniv Taigman, Lior Wolf, Tal Hassner, et al. “Multiple One-Shots for Utilizing
Class Label Information.” In: BMVC. Vol. 2. 2009, pp. 1–12.

[33] Olivier Chapelle and S Sathiya Keerthi. “Efficient algorithms for ranking with
SVMs”. In: Information Retrieval 13.3 (2010), pp. 201–215.

[34] Thorsten Joachims. “Optimizing search engines using clickthrough data”. In: Pro-
ceedings of the eighth ACM SIGKDD international conference on Knowledge dis-
covery and data mining. ACM. 2002, pp. 133–142.

[35] Aude Oliva and Antonio Torralba. “Modeling the shape of the scene: A holistic
representation of the spatial envelope”. In: International journal of computer
vision 42.3 (2001), pp. 145–175.

	Introduction
	Aim
	Structure

	Literature Review
	Neural Network
	Structure of Neural Network
	Training Phases
	Step 1: Forward Pass
	Step 2: Backward Pass

	Convolutional Neural Network (CNN)
	Layers
	Convolutional Layer

	The Concept of Deconvolutional Network (DeConvNet)
	Max Pooling

	Weight Initialisation
	Weight Normalisation
	Regularisation
	Activation Functions

	Applications in Classification
	Strategies

	Applications in Generation
	Autoencoder
	Generative Adversarial Nets (GAN)
	Deep Convolutional Generative Adversarial Network (DC-GAN)

	Ranking
	Summary

	Methodology
	Datasets
	Data Pre-processing
	Cropping
	Normalisation

	The Generative Model
	The Ranker
	RankSVM

	Ranking Latent Variables
	Latent Exploration
	Evaluating Quality of Network and its Outcome

	Results
	Network Performance
	Ranker Performance
	Ranking Test Images
	Ranking Latent Variables

	Data Exploration
	Extrema Interpolation
	Iterative Interpolation

	Summary

	Conclusion
	Achievements
	Future Work
	Final Thoughts

